更改

跳到导航 跳到搜索
删除19字节 、 2024年8月31日 (星期六)
第252行: 第252行:  
对于图3中的压缩信息信道,<math>\psi_\alpha</math>的雅可比矩阵的行列式和<math>\mathbf{y}_t</math>的香农熵的下界是整个信道的信息:
 
对于图3中的压缩信息信道,<math>\psi_\alpha</math>的雅可比矩阵的行列式和<math>\mathbf{y}_t</math>的香农熵的下界是整个信道的信息:
 
{{NumBlk|:|<blockquote><math>H(\mathbf{x}_t)+ \mathbb{E}(\ln | \det (J_{\psi_\alpha} (\mathbf{x}_t))|) \geq H(\mathbf{y}_t) + \mathbb{E}(\ln |\det(J_{\psi_\alpha}, \mathbf{y}_t))|) \geq I(\mathbf{x}_t ; \hat{\mathbf{x}_{t+1}})</math></blockquote>|{{EquationNote|23}}}}
 
{{NumBlk|:|<blockquote><math>H(\mathbf{x}_t)+ \mathbb{E}(\ln | \det (J_{\psi_\alpha} (\mathbf{x}_t))|) \geq H(\mathbf{y}_t) + \mathbb{E}(\ln |\det(J_{\psi_\alpha}, \mathbf{y}_t))|) \geq I(\mathbf{x}_t ; \hat{\mathbf{x}_{t+1}})</math></blockquote>|{{EquationNote|23}}}}
其中H为香农熵测度,<math>J_{\psi_\alpha}(\mathbf{x}_t)</math>为双射<math>\psi_\alpha</math>输入<math>\mathbf{x}_t</math> 时的雅可比矩阵,<math>J_{\psi_\alpha , \mathbf{y}_t}(\mathbf{x}_t)</math> 为<math>J_{\psi_\alpha}(\mathbf{x}_t)</math>在<math>\mathbf{x}'_t</math> 投影<math>\mathbf{y}_t</math>上的子矩阵。证明见附录D。
+
其中H为香农熵测度,<math>J_{\psi_\alpha}(\mathbf{x}_t)</math>为双射<math>\psi_\alpha</math>输入<math>\mathbf{x}_t</math> 时的雅可比矩阵,<math>J_{\psi_\alpha , \mathbf{y}_t}(\mathbf{x}_t)</math> 为<math>J_{\psi_\alpha}(\mathbf{x}_t)</math>在<math>\mathbf{x}'_t</math> 投影<math>\mathbf{y}_t</math>上的子矩阵。
    
由于给出了<math>\mathbf{\mathrm{x}}_t</math>的熵,定理4指出 <math>|\det(J_{\psi_\alpha}(\mathbf{x}_t))|</math>的对数的期望以及<math>\mathbf{y}_t</math>必然大于整个信道的信息。
 
由于给出了<math>\mathbf{\mathrm{x}}_t</math>的熵,定理4指出 <math>|\det(J_{\psi_\alpha}(\mathbf{x}_t))|</math>的对数的期望以及<math>\mathbf{y}_t</math>必然大于整个信道的信息。
786

个编辑

导航菜单