第55行: |
第55行: |
| | | |
| <math> | | <math> |
− | Pr_{\pi}[f_n \in A_t |f_{n-1} \in A_s f_1 \in A_j f_0 \in A_i] | + | Pr_{\pi}[f_n \in A_t |f_{n-1} \in A_s, f_1 \in A_j, f_0 \in A_i] |
| </math> | | </math> |
| [[文件:Lump fig1.png|缩略图|398x398像素|图1:Zhang<ref name=":0" /> 文章中的示意图。图中左面四个矩阵都是lumpable马尔科夫矩阵,而右面的P_2是一个噪声矩阵,(P_1)^T P_2 = 0]] | | [[文件:Lump fig1.png|缩略图|398x398像素|图1:Zhang<ref name=":0" /> 文章中的示意图。图中左面四个矩阵都是lumpable马尔科夫矩阵,而右面的P_2是一个噪声矩阵,(P_1)^T P_2 = 0]] |
第64行: |
第64行: |
| 对于任意一对<math>A_i, A_j</math>,每一个属于<math>A_i</math>的状态<math>s_k</math>的<math>p_{kA_j}</math>都是一样的。 | | 对于任意一对<math>A_i, A_j</math>,每一个属于<math>A_i</math>的状态<math>s_k</math>的<math>p_{kA_j}</math>都是一样的。 |
| | | |
− | 也就是说<math>p_{k A_j} = \sum_{s_m \in A_j} p_{k m} = p_{A_i A_j} = p_{k A_j}, k \in A_i</math> | + | 也就是说<math>p_{s_k A_j} = \sum_{s_m \in A_j} p_{s_k s_m} = p_{A_i A_j}, k \in A_i</math>。 |
| | | |
| + | 这个公式表达的是,群组<math>A_i</math>到群组<math>A_j</math>的转移概率 = 群组<math>A_i</math>中任意状态<math>s_k</math>到群组<math>A_j</math>的转移概率 = 群组<math>i</math>中任意状态<math>s_k</math>到群组<math>A_j</math>中的状态的转移概率的和。 |
| | | |
| | | |
− | 直观上来说,当马尔科夫矩阵存在block结构,或者状态明显可被分成几种partition的时候,该矩阵就会lumpable,如图一中的<math>\bar{P}</math>所示。
| + | |
| + | 由此公式我们能获得一个直观上的说法:当马尔科夫矩阵存在block结构,或者状态明显可被分成几种partition的时候,该矩阵就会lumpable,如图一中的<math>\bar{P}</math>所示。 |
| | | |
| 但是,有时候有些lumpable的矩阵的状态排序被打乱了(如图一中的<math>P_1</math>),或者矩阵包含了如<math>P_2</math>的噪声(如图一中的<math>P</math>,<math>P = P_1 + P_2, P_1^TP_2 = 0</math>)。 | | 但是,有时候有些lumpable的矩阵的状态排序被打乱了(如图一中的<math>P_1</math>),或者矩阵包含了如<math>P_2</math>的噪声(如图一中的<math>P</math>,<math>P = P_1 + P_2, P_1^TP_2 = 0</math>)。 |
| + | |
| + | |
| + | |
| + | ===针对Lumpability的粗粒化方法=== |
| | | |
| 我们在实际问题中很多时候要面对的是像<math>P</math>这样的矩阵,我们既无法确定它是否lumpable,也无法决定它的partition,我们甚至不知道它的马尔科夫秩。 | | 我们在实际问题中很多时候要面对的是像<math>P</math>这样的矩阵,我们既无法确定它是否lumpable,也无法决定它的partition,我们甚至不知道它的马尔科夫秩。 |
第93行: |
第99行: |
| 这个看起来非常眼熟,其实它就是在做kMeans聚类算法。让<math>v_s</math>和组里的<math>V[i:r]</math>距离最小的方法,就是让<math>v_s</math>成为<math>V[i:r]</math>这若干个点的中心。 | | 这个看起来非常眼熟,其实它就是在做kMeans聚类算法。让<math>v_s</math>和组里的<math>V[i:r]</math>距离最小的方法,就是让<math>v_s</math>成为<math>V[i:r]</math>这若干个点的中心。 |
| | | |
− | 回顾一下Kmeans算法把n个点聚成r类的损失函数,其中第<math>i</math>个点被归到第<math>c^i</math>类,而<math>\mu_j</math>为第<math>j</math>类点的中心点:
| + | 回顾一下kMeans算法把n个点聚成r类的目标函数,其中第<math>i</math>个点被归到第<math>c^i</math>类,而<math>\mu_j</math>为第<math>j</math>类点的中心点: |
| | | |
| <math>J(c^1, ... , c^n, \mu_1, ... , \mu_r) = \sum_{i=1}^n || x_i - \mu_{c^i} ||^2 </math> | | <math>J(c^1, ... , c^n, \mu_1, ... , \mu_r) = \sum_{i=1}^n || x_i - \mu_{c^i} ||^2 </math> |
| | | |
− | 所以,我们就可以通过上述算法或者kMeans来获取最优partition,然后根据这个partition来判断马尔科夫矩阵的lumpability。(注:文章中并没有提到可以用KMeans来实现这个算法,但笔者认为它们是等价的)
| + | 我们看到这两个目标函数是非常相似的。所以,我们就可以通过上述算法或者kMeans来获取最优partition,然后根据这个partition来判断马尔科夫矩阵的lumpability。(注:文章中并没有提到可以用KMeans来实现这个算法,但笔者认为它们是等价的) |
− | | |
− | | |
| | | |
| =因果涌现= | | =因果涌现= |