| 为了增强分布外泛化能力,学者们可以生成多样化的数据,模拟不同的测试环境,还可以通过域适应技术(Domain Adaptation)<ref>Stan S ,Rostami M . Source-free domain adaptation for semantic image segmentation using internal representations [J]. Frontiers in Big Data, 2024, 7 1359317-1359317.</ref>,使模型可以适应不同的测试数据分布。另外,学者们也提出了[[不变性学习]](Invariant Learning)<ref>L G M ,S A D ,M C S . Variability in training unlocks generalization in visual perceptual learning through invariant representations. [J]. Current biology : CB, 2023, 33 (5): 817-826.e3.</ref>、[[元学习]](Meta Learning)<ref>Zhang B ,Gao B ,Liang S , et al. A classification algorithm based on improved meta learning and transfer learning for few‐shot medical images [J]. IET Image Processing, 2023, 17 (12): 3589-3598.</ref>等方法解决该问题。 | | 为了增强分布外泛化能力,学者们可以生成多样化的数据,模拟不同的测试环境,还可以通过域适应技术(Domain Adaptation)<ref>Stan S ,Rostami M . Source-free domain adaptation for semantic image segmentation using internal representations [J]. Frontiers in Big Data, 2024, 7 1359317-1359317.</ref>,使模型可以适应不同的测试数据分布。另外,学者们也提出了[[不变性学习]](Invariant Learning)<ref>L G M ,S A D ,M C S . Variability in training unlocks generalization in visual perceptual learning through invariant representations. [J]. Current biology : CB, 2023, 33 (5): 817-826.e3.</ref>、[[元学习]](Meta Learning)<ref>Zhang B ,Gao B ,Liang S , et al. A classification algorithm based on improved meta learning and transfer learning for few‐shot medical images [J]. IET Image Processing, 2023, 17 (12): 3589-3598.</ref>等方法解决该问题。 |