更改

跳到导航 跳到搜索
添加182字节 、 2024年9月7日 (星期六)
第73行: 第73行:  
为了增强分布外泛化能力,学者们可以生成多样化的数据,模拟不同的测试环境,还可以通过域适应技术(Domain Adaptation)<ref>Stan S ,Rostami M . Source-free domain adaptation for semantic image segmentation using internal representations [J]. Frontiers in Big Data, 2024, 7 1359317-1359317.</ref>,使模型可以适应不同的测试数据分布。另外,学者们也提出了[[不变性学习]](Invariant Learning)<ref>L G M ,S A D ,M C S . Variability in training unlocks generalization in visual perceptual learning through invariant representations. [J]. Current biology : CB, 2023, 33 (5): 817-826.e3.</ref>、[[元学习]](Meta Learning)<ref>Zhang B ,Gao B ,Liang S , et al. A classification algorithm based on improved meta learning and transfer learning for few‐shot medical images [J]. IET Image Processing, 2023, 17 (12): 3589-3598.</ref>等方法解决该问题。
 
为了增强分布外泛化能力,学者们可以生成多样化的数据,模拟不同的测试环境,还可以通过域适应技术(Domain Adaptation)<ref>Stan S ,Rostami M . Source-free domain adaptation for semantic image segmentation using internal representations [J]. Frontiers in Big Data, 2024, 7 1359317-1359317.</ref>,使模型可以适应不同的测试数据分布。另外,学者们也提出了[[不变性学习]](Invariant Learning)<ref>L G M ,S A D ,M C S . Variability in training unlocks generalization in visual perceptual learning through invariant representations. [J]. Current biology : CB, 2023, 33 (5): 817-826.e3.</ref>、[[元学习]](Meta Learning)<ref>Zhang B ,Gao B ,Liang S , et al. A classification algorithm based on improved meta learning and transfer learning for few‐shot medical images [J]. IET Image Processing, 2023, 17 (12): 3589-3598.</ref>等方法解决该问题。
   −
= 神经信息压缩机(NIS)介绍 =
+
= 机器学习识别因果涌现问题 =
 +
接下来,本词条将给出用机器学习方法识别因果涌现问题的形式化定义,其次,介绍NIS框架的解决思路,最后介绍NIS+解决该文提的框架。
    
== 数学问题定义 ==
 
== 数学问题定义 ==
786

个编辑

导航菜单