更改

跳到导航 跳到搜索
添加2字节 、 2024年9月9日 (星期一)
第247行: 第247行:       −
'''模型的互信息与数据的互信息接近'''
+
===模型的互信息与数据的互信息接近===
    
如果 NIS 框架中的神经网络是训练充分的(即对于任何<math>t \in [1,T]</math>训练周期结束时有 <math>Pr_\tau (\hat{\mathbf{x}}_{t+1} | \mathbf{x}_t)</math> 和 <math>Pr_\tau (\mathbf{x}_{t+1} | \mathbf{x}_t)</math> 之间的 Kullback- Leibler 散度趋近于 0),那么对于任何<math>t \in [1, T]</math>:
 
如果 NIS 框架中的神经网络是训练充分的(即对于任何<math>t \in [1,T]</math>训练周期结束时有 <math>Pr_\tau (\hat{\mathbf{x}}_{t+1} | \mathbf{x}_t)</math> 和 <math>Pr_\tau (\mathbf{x}_{t+1} | \mathbf{x}_t)</math> 之间的 Kullback- Leibler 散度趋近于 0),那么对于任何<math>t \in [1, T]</math>:
第258行: 第258行:       −
'''信息瓶颈是编码器的下界'''
+
===信息瓶颈是编码器的下界===
   −
对于图3中的压缩信息信道,<math>\psi_\alpha</math>的雅可比矩阵的行列式和<math>\mathbf{y}_t</math>的香农熵的下界是整个信道的信息:
+
对于上图中的压缩信息信道,<math>\psi_\alpha</math>的雅可比矩阵的行列式和<math>\mathbf{y}_t</math>的香农熵的下界是整个信道的信息:
 
{{NumBlk|:|<blockquote><math>H(\mathbf{x}_t)+ \mathbb{E}(\ln | \det (J_{\psi_\alpha} (\mathbf{x}_t))|) \geq H(\mathbf{y}_t) + \mathbb{E}(\ln |\det(J_{\psi_\alpha}, \mathbf{y}_t))|) \geq I(\mathbf{x}_t ; \hat{\mathbf{x}}_{t+1})</math></blockquote>|{{EquationNote|23}}}}
 
{{NumBlk|:|<blockquote><math>H(\mathbf{x}_t)+ \mathbb{E}(\ln | \det (J_{\psi_\alpha} (\mathbf{x}_t))|) \geq H(\mathbf{y}_t) + \mathbb{E}(\ln |\det(J_{\psi_\alpha}, \mathbf{y}_t))|) \geq I(\mathbf{x}_t ; \hat{\mathbf{x}}_{t+1})</math></blockquote>|{{EquationNote|23}}}}
 
其中H为香农熵测度,<math>J_{\psi_\alpha}(\mathbf{x}_t)</math>为双射<math>\psi_\alpha</math>输入<math>\mathbf{x}_t</math> 时的雅可比矩阵,<math>J_{\psi_\alpha , \mathbf{y}_t}(\mathbf{x}_t)</math> 为<math>J_{\psi_\alpha}(\mathbf{x}_t)</math>在<math>\mathbf{x}'_t</math> 投影<math>\mathbf{y}_t</math>上的子矩阵。
 
其中H为香农熵测度,<math>J_{\psi_\alpha}(\mathbf{x}_t)</math>为双射<math>\psi_\alpha</math>输入<math>\mathbf{x}_t</math> 时的雅可比矩阵,<math>J_{\psi_\alpha , \mathbf{y}_t}(\mathbf{x}_t)</math> 为<math>J_{\psi_\alpha}(\mathbf{x}_t)</math>在<math>\mathbf{x}'_t</math> 投影<math>\mathbf{y}_t</math>上的子矩阵。
727

个编辑

导航菜单