假设给定<math>\mathbf{x}_t</math>下<math>\mathbf{x}_{t+1}</math>的概率密度可以通过函数<math>Pr(\mathbf{x}_{t+1} | \mathbf{x}_t) \equiv G(\mathbf{x}_{t+1}, \mathbf{x}_t)</math>描述,且神经信息挤压框架训练充分,即可通过以下方式计算<math>f_\beta</math>的宏观动力学信息: | 假设给定<math>\mathbf{x}_t</math>下<math>\mathbf{x}_{t+1}</math>的概率密度可以通过函数<math>Pr(\mathbf{x}_{t+1} | \mathbf{x}_t) \equiv G(\mathbf{x}_{t+1}, \mathbf{x}_t)</math>描述,且神经信息挤压框架训练充分,即可通过以下方式计算<math>f_\beta</math>的宏观动力学信息: |