第9行: |
第9行: |
| 在概率论和信息论中,两个随机变量的'''互信息'''(mutual Information,MI)度量了两个变量之间相互依赖的程度。具体来说,对于两个随机变量,MI是一个随机变量由于已知另一个随机变量而减少的“信息量”(单位通常为比特)。互信息的概念与随机变量的熵紧密相关,熵是信息论中的基本概念,它量化的是随机变量中所包含的“信息量”。 | | 在概率论和信息论中,两个随机变量的'''互信息'''(mutual Information,MI)度量了两个变量之间相互依赖的程度。具体来说,对于两个随机变量,MI是一个随机变量由于已知另一个随机变量而减少的“信息量”(单位通常为比特)。互信息的概念与随机变量的熵紧密相关,熵是信息论中的基本概念,它量化的是随机变量中所包含的“信息量”。 |
| | | |
| + | 离散随机变量 X 和 Y 的互信息可以计算为:<syntaxhighlight lang="latex"> |
| 离散随机变量 X 和 Y 的互信息可以计算为: | | 离散随机变量 X 和 Y 的互信息可以计算为: |
| | | |
− | <nowiki>:</nowiki><nowiki><math> I(X;Y) = \sum_{y \in Y} \sum_{x \in X} </nowiki>
| + | :<math> I(X;Y) = \sum_{y \in Y} \sum_{x \in X} |
| + | p(x,y) \log{ \left(\frac{p(x,y)}{p(x)\,p(y)} |
| + | \right) }, \,\! |
| + | </math> |
| | | |
− | p(x,y) \log{ \left(\frac{p(x,y)}{p(x)\,p(y)}
| + | 其中 ''p''(''x'', ''y'') 是 ''X'' 和 ''Y'' 的联合概率质量函数,而 <math>p(x)</math> 和 <math>p(y)</math> 分别是 ''X'' 和 ''Y'' 的边缘概率质量函数。 |
− | | + | </syntaxhighlight> |
− | \right) }, \,\!
| |
− | | |
− | <nowiki></math></nowiki>
| |
| | | |
| 其中 <nowiki>''</nowiki>p<nowiki>''</nowiki>(<nowiki>''</nowiki>x<nowiki>''</nowiki>, <nowiki>''</nowiki>y<nowiki>''</nowiki>) 是 <nowiki>''</nowiki>X<nowiki>''</nowiki> 和 <nowiki>''</nowiki>Y<nowiki>''</nowiki> 的联合概率质量函数,而 <nowiki><math>p(x)</math></nowiki> 和 <nowiki><math>p(y)</math></nowiki> 分别是 <nowiki>''</nowiki>X<nowiki>''</nowiki> 和 <nowiki>''</nowiki>Y<nowiki>''</nowiki> 的边缘概率质量函数。 | | 其中 <nowiki>''</nowiki>p<nowiki>''</nowiki>(<nowiki>''</nowiki>x<nowiki>''</nowiki>, <nowiki>''</nowiki>y<nowiki>''</nowiki>) 是 <nowiki>''</nowiki>X<nowiki>''</nowiki> 和 <nowiki>''</nowiki>Y<nowiki>''</nowiki> 的联合概率质量函数,而 <nowiki><math>p(x)</math></nowiki> 和 <nowiki><math>p(y)</math></nowiki> 分别是 <nowiki>''</nowiki>X<nowiki>''</nowiki> 和 <nowiki>''</nowiki>Y<nowiki>''</nowiki> 的边缘概率质量函数。 |
第33行: |
第34行: |
| | | |
| ====Rosas的因果涌现理论==== | | ====Rosas的因果涌现理论==== |
− | Rosas等<ref name=":5">Rosas F E, Mediano P A, Jensen H J, et al. Reconciling emergences: An information-theoretic approach to identify causal emergence in multivariate data[J]. PLoS computational biology, 2020, 16(12): e1008289.</ref>从[[信息分解]]理论的视角出发,提出一种基于[[整合信息分解]]定义因果涌现的方法,并将因果涌现进一步区分为:[[因果解耦]](Causal Decoupling)和[[向下因果]](Downward Causation)两部分。其中因果解耦表示当前时刻宏观态对下一时刻宏观态的因果效应,向下因果表示上一时刻宏观态对下一时刻微观态的因果效应。因果解耦和向下因果的示意图如下图所示,其中微观状态输入为<math>X_t\ (X_t^1,X_t^2,…,X_t^n ) </math>,宏观状态是<math>V_t </math>,它由微观态变量<math>X_t </math>粗粒化而来,因而是<math>X_t </math>的随附特征(Supervenience),<math>X_{t+1} </math>和<math>V_{t+1} </math>分别表示下一时刻的微观和宏观状态。 | + | Rosas等<ref name=":5">Rosas F E, Mediano P A, Jensen H J, et al. Reconciling emergences: An information-theoretic approach to identify causal emergence in multivariate data[J]. PLoS computational biology, 2020, 16(12): e1008289.</ref>从[[信息分解]]理论的视角出发,提出一种基于[[整合信息分解]]定义因果涌现的方法,并将因果涌现进一步区分为:[[因果解耦]](Causal Decoupling)和[[向下因果]](Downward Causation)两部分。其中因果解耦表示当前时刻宏观态对下一时刻宏观态的因果效应,向下因果表示上一时刻宏观态对下一时刻微观态的因果效应。因果解耦和向下因果的示意图如下图所示,其中微观状态输入为<math>X_t\ (X_t^1,X_t^2,…,X_t^n ) |
| + | </math>,宏观状态是<math>V_t </math>,它由微观态变量<math>X_t </math>粗粒化而来,因而是<math>X_t </math>的随附特征(Supervenience),<math>X_{t+1} </math>和<math>V_{t+1} </math>分别表示下一时刻的微观和宏观状态。 |
| | | |
| [[文件:向下因果与因果解耦2.png|300x300像素|因果解耦与向下因果|链接=https://wiki.swarma.org/index.php/%E6%96%87%E4%BB%B6:%E5%90%91%E4%B8%8B%E5%9B%A0%E6%9E%9C%E4%B8%8E%E5%9B%A0%E6%9E%9C%E8%A7%A3%E8%80%A62.png]] | | [[文件:向下因果与因果解耦2.png|300x300像素|因果解耦与向下因果|链接=https://wiki.swarma.org/index.php/%E6%96%87%E4%BB%B6:%E5%90%91%E4%B8%8B%E5%9B%A0%E6%9E%9C%E4%B8%8E%E5%9B%A0%E6%9E%9C%E8%A7%A3%E8%80%A62.png]] |