更改
跳到导航
跳到搜索
←上一编辑
下一编辑→
基于可逆性的因果涌现理论
(查看源代码)
2024年9月19日 (四) 20:10的版本
添加4字节
、
2024年9月19日 (星期四)
→不同
第295行:
第295行:
</math>接近 0 时,这与行向量之间的线性相互依赖性相关。虽然行向量的线性相互依赖性表明它们的相似性——这意味着两个相同的行向量是线性相关的,但反之则不一定成立。因此,<math>
</math>接近 0 时,这与行向量之间的线性相互依赖性相关。虽然行向量的线性相互依赖性表明它们的相似性——这意味着两个相同的行向量是线性相关的,但反之则不一定成立。因此,<math>
\Gamma_{\alpha}
\Gamma_{\alpha}
−
</math>
不仅捕获了行向量之间的相似性,而且还捕获了P与动态可逆矩阵的接近度。相比之下,EI无法完成这个任务。
+
</math>
不仅捕获了行向量之间的相似性,而且还捕获了P与动力学可逆矩阵的接近度。相比之下,EI无法完成这个任务。
可以通过以下数值实验来验证这一点:可以通过将线性相关行向量与线性独立行向量混合来创建TPM,其中独立向量的数量或等级是受控参数。首先,生成r个独立的独热向量,然后软化这些行向量,软化程度由<math>
可以通过以下数值实验来验证这一点:可以通过将线性相关行向量与线性独立行向量混合来创建TPM,其中独立向量的数量或等级是受控参数。首先,生成r个独立的独热向量,然后软化这些行向量,软化程度由<math>
第320行:
第320行:
\Gamma_{\alpha}
\Gamma_{\alpha}
</math>可以提供有关行向量的更全面的见解,超越其与平均行向量的相似性。
</math>可以提供有关行向量的更全面的见解,超越其与平均行向量的相似性。
+
=基于SVD分解的新粗粒化策略=
=基于SVD分解的新粗粒化策略=
虽然无需粗粒化也能定义和量化清晰或模糊因果涌现,但需要对原始系统进行更简单的粗粒化描述,以便与 EI 得出的结果进行比较。因此,该理论提供了一种基于奇异值分解的粗粒度方法,以获得宏观层面的简化TPM。其基本思想是将 P 中的行向量 <math>
虽然无需粗粒化也能定义和量化清晰或模糊因果涌现,但需要对原始系统进行更简单的粗粒化描述,以便与 EI 得出的结果进行比较。因此,该理论提供了一种基于奇异值分解的粗粒度方法,以获得宏观层面的简化TPM。其基本思想是将 P 中的行向量 <math>
相信未来
2,435
个编辑
导航菜单
个人工具
登录
名字空间
页面
讨论
变种
视图
阅读
查看源代码
查看历史
更多
搜索
导航
集智百科
集智主页
集智斑图
集智学园
最近更改
所有页面
帮助
工具
特殊页面
可打印版本