结果表明(图(f)和图(g)),在这两种情况下,归一化MAE都增加了,这表明随着内在和外在噪声的增加,预测任务更具挑战性。然而,这两种类型的噪声之间的差异可以通过检查因果涌现(<math>\Delta{J}>0 </math>)的程度来观察。从图(f)可以看出,<math>\Delta{J}>0 </math>随外部噪声(<math>\delta_{max} </math>)的增大而增大,说明粗粒化策略可以在一定范围内减轻噪声影响,增强[[因果效应]]的效果。<math>\delta_{max}<0.1 </math>时,归一化MAE小于0.3(黑色虚线),满足式{{EquationNote|1}}的约束。在这种情况下,[[因果涌现]]的程度随着<math>\delta_{max} </math>的增大而增大。然而,当超过0.3的阈值时,即使<math>\Delta{J}>0 </math>减小,作者也无法得出有意义的结论(违反了式{{EquationNote|1}}中的约束),结果的可靠性就会降低。从图(g)可以看出,<math>\Delta{J}>0 </math>随着内部噪声(α)水平的增加而减小。这是由于宏观层面的动力学学习器试图在这一阶段捕捉每个群体的群体行为。然而,随着内部噪声的增加,群体行为逐渐减弱,导致[[因果涌现]]降低。因为归一化MAE超过0.3的阈值时违反了式{{EquationNote|1}}中的约束,作者没有计算<math>\alpha>0.6 </math>的情况。图(e)显示了当内在噪声<math>\alpha=0.4 </math>时候的真实轨迹和预测。可以观察到,在早期可以预测直线趋势,但随着噪声引起的偏差逐渐增大,误差也随之增大,[[因果涌现]]降低。 | 结果表明(图(f)和图(g)),在这两种情况下,归一化MAE都增加了,这表明随着内在和外在噪声的增加,预测任务更具挑战性。然而,这两种类型的噪声之间的差异可以通过检查因果涌现(<math>\Delta{J}>0 </math>)的程度来观察。从图(f)可以看出,<math>\Delta{J}>0 </math>随外部噪声(<math>\delta_{max} </math>)的增大而增大,说明粗粒化策略可以在一定范围内减轻噪声影响,增强[[因果效应]]的效果。<math>\delta_{max}<0.1 </math>时,归一化MAE小于0.3(黑色虚线),满足式{{EquationNote|1}}的约束。在这种情况下,[[因果涌现]]的程度随着<math>\delta_{max} </math>的增大而增大。然而,当超过0.3的阈值时,即使<math>\Delta{J}>0 </math>减小,作者也无法得出有意义的结论(违反了式{{EquationNote|1}}中的约束),结果的可靠性就会降低。从图(g)可以看出,<math>\Delta{J}>0 </math>随着内部噪声(α)水平的增加而减小。这是由于宏观层面的动力学学习器试图在这一阶段捕捉每个群体的群体行为。然而,随着内部噪声的增加,群体行为逐渐减弱,导致[[因果涌现]]降低。因为归一化MAE超过0.3的阈值时违反了式{{EquationNote|1}}中的约束,作者没有计算<math>\alpha>0.6 </math>的情况。图(e)显示了当内在噪声<math>\alpha=0.4 </math>时候的真实轨迹和预测。可以观察到,在早期可以预测直线趋势,但随着噪声引起的偏差逐渐增大,误差也随之增大,[[因果涌现]]降低。 |