更改

跳到导航 跳到搜索
无编辑摘要
第3行: 第3行:  
具体来说,一个 <math>m * n</math> 复矩阵 <math>\mathbf{M}</math> 的奇异值分解是一种形如 <math>\mathbf{M} = \mathbf{U\Sigma V^}</math> 的分解,其中 <math>\mathbf{U}</math> 是 <math>m \times m</math> 复酉矩阵,<math>\mathbf{\Sigma}</math> 是 <math>m \times n</math> 矩形对角矩阵,对角线上的元素是非负实数,<math>\mathbf{V}</math> 是 <math>n \times n</math> 复酉矩阵,<math>\mathbf{V}^</math> 是 <math>\mathbf{V}</math> 的共轭转置。这种分解对任何复矩阵都存在。如果 <math>\mathbf{M}</math> 是实矩阵,那么 <math>\mathbf{U}</math> 和 <math>\mathbf{V}</math> 可以保证是实正交矩阵;在这种情况下,SVD 通常表示为 <math>\mathbf{U\Sigma V}^{\mathrm{T}}</math>。
 
具体来说,一个 <math>m * n</math> 复矩阵 <math>\mathbf{M}</math> 的奇异值分解是一种形如 <math>\mathbf{M} = \mathbf{U\Sigma V^}</math> 的分解,其中 <math>\mathbf{U}</math> 是 <math>m \times m</math> 复酉矩阵,<math>\mathbf{\Sigma}</math> 是 <math>m \times n</math> 矩形对角矩阵,对角线上的元素是非负实数,<math>\mathbf{V}</math> 是 <math>n \times n</math> 复酉矩阵,<math>\mathbf{V}^</math> 是 <math>\mathbf{V}</math> 的共轭转置。这种分解对任何复矩阵都存在。如果 <math>\mathbf{M}</math> 是实矩阵,那么 <math>\mathbf{U}</math> 和 <math>\mathbf{V}</math> 可以保证是实正交矩阵;在这种情况下,SVD 通常表示为 <math>\mathbf{U\Sigma V}^{\mathrm{T}}</math>。
   −
$\mathbf{\Sigma}$ 的对角元素 $\sigma_i = \Sigma_{ii}$ 由 $\mathbf{M}$ 唯一确定,被称为 $\mathbf{M}$ 的奇异值。非零奇异值的数量等于 $\mathbf{M}$ 的秩。$\mathbf{U}$ 的列和 $\mathbf{V}$ 的列分别被称为 $\mathbf{M}$ 的左奇异向量和右奇异向量。它们形成两组正交基 $\mathbf{u}_1, \ldots, \mathbf{u}_m$ 和 $\mathbf{v}_1, \ldots, \mathbf{v}_n$,如果将它们排序使得值为零的奇异值 $\sigma_i$ 都在最高编号的列(或行)中,那么奇异值分解可以写成:
+
 
 +
 
 +
 
 +
 
 +
<math>\mathbf{\Sigma}</math> 的对角元素 $\sigma_i = \Sigma_{ii}$ 由 $\mathbf{M}$ 唯一确定,被称为 $\mathbf{M}$ 的奇异值。非零奇异值的数量等于 $\mathbf{M}$ 的秩。$\mathbf{U}$ 的列和 $\mathbf{V}$ 的列分别被称为 $\mathbf{M}$ 的左奇异向量和右奇异向量。它们形成两组正交基 $\mathbf{u}_1, \ldots, \mathbf{u}_m$ 和 $\mathbf{v}_1, \ldots, \mathbf{v}_n$,如果将它们排序使得值为零的奇异值 $\sigma_i$ 都在最高编号的列(或行)中,那么奇异值分解可以写成:
    
<math>\mathbf{M} = \sum_{i=1}^r \sigma_i \mathbf{u}_i \mathbf{v}_i^*,</math>
 
<math>\mathbf{M} = \sum_{i=1}^r \sigma_i \mathbf{u}_i \mathbf{v}_i^*,</math>
1,177

个编辑

导航菜单