更改

跳到导航 跳到搜索
无编辑摘要
第22行: 第22行:     
==== 部分信息分解 ====
 
==== 部分信息分解 ====
在信息熵与互信息的基础上,部分信息分解是信息论的进一步扩展,旨在将信息论描述的成对关系推广到多个变量的相互作用。
+
在信息熵与互信息的基础上,部分信息分解(Partial Information Decomposition)是信息论的进一步扩展,旨在将信息论描述的成对关系推广到多个变量的相互作用。
    
信息论可以通过 相互信息 <math>I(X_1;Y)</math> 量化单个源变量 <math>X_1</math> 对目标变量 <math>Y</math> 的信息量。如果我们现在考虑第二个源变量 <math>X_2</math>,经典信息论只能描述联合变量 <math>\{X_1,X_2\></math> 与 <math>Y</math> 的相互信息,由 <math>I(X_1,X_2;Y)</math> 给出。但一般来说,了解各个变量 <math>X_1</math> 和 <math>X_2</math> 及其相互作用与 <math>Y</math> 究竟有何关系将会很有趣。
 
信息论可以通过 相互信息 <math>I(X_1;Y)</math> 量化单个源变量 <math>X_1</math> 对目标变量 <math>Y</math> 的信息量。如果我们现在考虑第二个源变量 <math>X_2</math>,经典信息论只能描述联合变量 <math>\{X_1,X_2\></math> 与 <math>Y</math> 的相互信息,由 <math>I(X_1,X_2;Y)</math> 给出。但一般来说,了解各个变量 <math>X_1</math> 和 <math>X_2</math> 及其相互作用与 <math>Y</math> 究竟有何关系将会很有趣。
第36行: 第36行:  
*<math>\text{Syn}(X_1,X_2;Y)</math> 表示[[协同信息]],是指所有微观态 <math>X_1</math> 和 <math>X_2</math> 联合在一起给宏观态 <math>Y</math> 提供的信息。
 
*<math>\text{Syn}(X_1,X_2;Y)</math> 表示[[协同信息]],是指所有微观态 <math>X_1</math> 和 <math>X_2</math> 联合在一起给宏观态 <math>Y</math> 提供的信息。
 
*<math>\text{Red}(X_1,X_2;Y)</math> 表示[[冗余信息]],是指两个微观态<math>X^1 </math>和<math>X^2 </math>重复地给宏观态 <math>Y</math> 的“冗余”信息。
 
*<math>\text{Red}(X_1,X_2;Y)</math> 表示[[冗余信息]],是指两个微观态<math>X^1 </math>和<math>X^2 </math>重复地给宏观态 <math>Y</math> 的“冗余”信息。
[[文件:PID Venn.png|居中|缩略图]]与互信息的关系
+
其中 <math>\text{Red}(X_1,X_2;Y) + \text{Unq}(X_1;Y \setminus X_2) = I(X_1;Y)</math> , <math>\text{Red}(X_1,X_2;Y) + \text{Unq}(X_2;Y \setminus X_2) = I(X_2;Y)</math>。[[文件:PID Venn.png|居中|缩略图]]晶格图(lattice)是抽象代数中研究的一种抽象结构,它由一个偏序集组成。信息分解所得到的信息原子也可以被描述为一组冗余晶格。该晶格图包含了由源变量集合的所有非空子集所组合构成的所有(无重复变量的)集合,每一个这种集合对应了一个节点。以两变量 <math>\{X_1,X_2\></math> 为例,集合 {1,2} 的所有非空子集包含 {1,2} {2} 和 {1},因此所能构成的无重复变量的集合包括 <nowiki>{{1,2}}</nowiki> <nowiki>{{2}}</nowiki> <nowiki>{{1}}</nowiki> 和 <nowiki>{{1}{2}}</nowiki>。如下图所示,这些anti-chain与上图的信息原子一一对应,既<nowiki>{{1,2}}</nowiki> 对应协同信息,<nowiki>{{2}}</nowiki> 和 <nowiki>{{1}}</nowiki> 对应特有信息,<nowiki>{{1}{2}}</nowiki>对应冗余信息。
 
+
[[文件:Lattice of 2.png|居中|缩略图]]
冗余晶格图
+
这种形式能够便于对更多源变量的情景进行表示,以三变量为例,信息分解的结果如下图所示:
    
==== 整合信息分解 ====
 
==== 整合信息分解 ====
2,435

个编辑

导航菜单