设 <math>\mathbf{M}</math> 为 <math>m\times n</math> 实矩阵。定义 <math>S^{k-1}</math> 为 <math>\mathbb{R}^{k}</math> 中的单位 <math>(k-1)</math>-球面,并令 <math>\sigma(\mathbf{u},\mathbf{v})=\mathbf{u}^{\operatorname{T}}\mathbf{M}\mathbf{v}</math>,其中 <math>\mathbf{u} \in S^{m-1}</math>, <math>\mathbf{v} \in S^{n-1}</math>。 | 设 <math>\mathbf{M}</math> 为 <math>m\times n</math> 实矩阵。定义 <math>S^{k-1}</math> 为 <math>\mathbb{R}^{k}</math> 中的单位 <math>(k-1)</math>-球面,并令 <math>\sigma(\mathbf{u},\mathbf{v})=\mathbf{u}^{\operatorname{T}}\mathbf{M}\mathbf{v}</math>,其中 <math>\mathbf{u} \in S^{m-1}</math>, <math>\mathbf{v} \in S^{n-1}</math>。 |