更改

跳到导航 跳到搜索
添加76字节 、 2024年10月21日 (星期一)
第285行: 第285行:  
奇异值分解(SVD)在线性[[反问题]](inverse problems)研究中广泛应用,分析[[Tikhonov正则化]]等方法时颇有助益。统计学界普遍使用它,与[[主成分分析]](principal component analysis)和[[对应分析]](correspondence analysis)密切相关,信号处理和模式识别领域也常见其身影。此外,它还用于仅输出[[模态分析]](modal analysis),可从奇异向量确定非缩放[[模态形状]](mode shapes)。自然语言文本处理中的[[潜在语义索引]](latent semantic indexing)也离不开它。
 
奇异值分解(SVD)在线性[[反问题]](inverse problems)研究中广泛应用,分析[[Tikhonov正则化]]等方法时颇有助益。统计学界普遍使用它,与[[主成分分析]](principal component analysis)和[[对应分析]](correspondence analysis)密切相关,信号处理和模式识别领域也常见其身影。此外,它还用于仅输出[[模态分析]](modal analysis),可从奇异向量确定非缩放[[模态形状]](mode shapes)。自然语言文本处理中的[[潜在语义索引]](latent semantic indexing)也离不开它。
   −
在涉及线性或线性化系统的一般数值计算中,常用一个普遍常数来刻画问题的规律性或奇异性,即系统的"条件数" <math>\kappa := \sigma_{\text{max}} / \sigma_{\text{min}}</math>。这个数值通常决定了给定计算方案在这些系统上的误差率或收敛速度。<ref>{{citation | last1=Edelman | first1=Alan | date=1992 | title="On the distribution of a scaled condition number" | journal=Math. Comp. | volume=58 | issue=197 | pages=185–190 | doi=10.1090/S0025-5718-1992-1106966-2 | bibcode=1992MaCom..58..185E}}</ref><ref>{{citation | last1=Shen | first1=Jianhong (Jackie) | date=2001 | title="On the singular values of Gaussian random matrices" | journal=Linear Alg. Appl. | volume=326 | issue=1–3 | pages=1–14 | doi=10.1016/S0024-3795(00)00322-0}}</ref>
+
在涉及线性或线性化系统的一般数值计算中,常用一个普遍常数来刻画问题的规律性或奇异性,即系统的"条件数" <math>\kappa := \sigma_{\text{max}} / \sigma_{\text{min}}</math>。这个数值通常决定了给定计算方案在这些系统上的误差率或收敛速度。<ref>{{citation | last1=Edelman | first1=Alan | date=1992 |url=https://math.mit.edu/~edelman/publications/distribution_of_a_scaled.pdf| title="On the distribution of a scaled condition number" | journal=Math. Comp. | volume=58 | issue=197 | pages=185–190 | doi=10.1090/S0025-5718-1992-1106966-2 | bibcode=1992MaCom..58..185E}}</ref><ref>{{citation | last1=Shen | first1=Jianhong (Jackie) | date=2001 | title="On the singular values of Gaussian random matrices" | journal=Linear Alg. Appl. | volume=326 | issue=1–3 | pages=1–14 | doi=10.1016/S0024-3795(00)00322-0}}</ref>
    
[[量子信息]](quantum information)领域中,SVD以Schmidt分解的形式发挥着关键作用。通过它,我们可以自然地分解两个量子系统的状态,从而提供了它们纠缠的充要条件:只要 <math>\mathbf{\Sigma}</math> 矩阵的秩大于1。
 
[[量子信息]](quantum information)领域中,SVD以Schmidt分解的形式发挥着关键作用。通过它,我们可以自然地分解两个量子系统的状态,从而提供了它们纠缠的充要条件:只要 <math>\mathbf{\Sigma}</math> 矩阵的秩大于1。
2,464

个编辑

导航菜单