更改

跳到导航 跳到搜索
添加18字节 、 2024年10月21日 (星期一)
第293行: 第293行:  
[[降阶建模]](reduced-order modeling)中也少不了SVD的身影。降阶建模旨在减少复杂系统中的自由度数量。研究人员将SVD与径向基函数(radial basis functions)结合,用于插值三维非稳态流问题的解。<ref>{{citation | last1=Walton | first1=S. | last2=Hassan | first2=O. | last3=Morgan | first3=K. | date=2013 |url=https://linkinghub.elsevier.com/retrieve/pii/S0307904X13002771| title="Reduced order modelling for unsteady fluid flow using proper orthogonal decomposition and radial basis functions" | journal=Applied Mathematical Modelling | volume=37 | issue=20–21 | pages=8930–8945 | doi=10.1016/j.apm.2013.04.025}}</ref>
 
[[降阶建模]](reduced-order modeling)中也少不了SVD的身影。降阶建模旨在减少复杂系统中的自由度数量。研究人员将SVD与径向基函数(radial basis functions)结合,用于插值三维非稳态流问题的解。<ref>{{citation | last1=Walton | first1=S. | last2=Hassan | first2=O. | last3=Morgan | first3=K. | date=2013 |url=https://linkinghub.elsevier.com/retrieve/pii/S0307904X13002771| title="Reduced order modelling for unsteady fluid flow using proper orthogonal decomposition and radial basis functions" | journal=Applied Mathematical Modelling | volume=37 | issue=20–21 | pages=8930–8945 | doi=10.1016/j.apm.2013.04.025}}</ref>
   −
值得一提的是,科学家们已经利用SVD改进了地面引力波干涉仪aLIGO的[[引力波形建模]](gravitational wave modeling)。<ref>{{citation | last1=Setyawati | first1=Y. | last2=Ohme | first2=F. | last3=Khan | first3=S. | date=2019 | title="Enhancing gravitational waveform model through dynamic calibration" | journal=Physical Review D | volume=99 | issue=2 | pages=024010 | doi=10.1103/PhysRevD.99.024010 | arxiv=1810.07060 | bibcode=2019PhRvD..99b4010S}}</ref>SVD有助于提高波形生成的准确性和速度,支持引力波搜索和更新两种不同的波形模型。
+
值得一提的是,科学家们已经利用SVD改进了地面引力波干涉仪aLIGO的[[引力波形建模]](gravitational wave modeling)。<ref>{{citation | last1=Setyawati | first1=Y. | last2=Ohme | first2=F. | last3=Khan | first3=S. | date=2019 | title="Enhancing gravitational waveform model through dynamic calibration" | journal=Physical Review D | volume=99 | issue=2 | pages=024010 | doi=10.1103/PhysRevD.99.024010 | arxiv=1810.07060 | bibcode=2019PhRvD..99b4010S | s2cid=118935941}}</ref>SVD有助于提高波形生成的准确性和速度,支持引力波搜索和更新两种不同的波形模型。
    
[[推荐系统]](Recommender systems)中,SVD用于预测用户对项目的评分。<ref>{{citation | last1=Sarwar | first1=Badrul | last2=Karypis | first2=George | last3=Konstan | first3=Joseph A. | last4=Riedl | first4=John T. | date=2000 | title="Application of Dimensionality Reduction in Recommender System – A Case Study" | publisher=University of Minnesota}}</ref>为了在商品机器集群上高效计算SVD,研究人员开发了分布式算法。<ref>{{citation | last1=Bosagh Zadeh | first1=Reza | last2=Carlsson | first2=Gunnar | date=2013 | title="Dimension Independent Matrix Square Using MapReduce" | arxiv=1304.1467 | bibcode=2013arXiv1304.1467B}}</ref>
 
[[推荐系统]](Recommender systems)中,SVD用于预测用户对项目的评分。<ref>{{citation | last1=Sarwar | first1=Badrul | last2=Karypis | first2=George | last3=Konstan | first3=Joseph A. | last4=Riedl | first4=John T. | date=2000 | title="Application of Dimensionality Reduction in Recommender System – A Case Study" | publisher=University of Minnesota}}</ref>为了在商品机器集群上高效计算SVD,研究人员开发了分布式算法。<ref>{{citation | last1=Bosagh Zadeh | first1=Reza | last2=Carlsson | first2=Gunnar | date=2013 | title="Dimension Independent Matrix Square Using MapReduce" | arxiv=1304.1467 | bibcode=2013arXiv1304.1467B}}</ref>
2,464

个编辑

导航菜单