更改

跳到导航 跳到搜索
删除2字节 、 2024年10月25日 (星期五)
第294行: 第294行:  
数值天气预报(numerical weather prediction)中,SVD对大型矩阵也有重要应用。利用Lanczos方法,可以估算在给定初始前向时间段内,对中心数值天气预报线性增长最快的几个扰动。这些扰动实际上是该时间间隔内全球天气线性化传播子对应最大奇异值的奇异向量。在这种情况下,输出奇异向量代表整个天气系统。随后,这些扰动通过完整的非线性模型运行,生成集合预报(ensemble forecast),为当前中心预测周围的不确定性提供了处理方法。
 
数值天气预报(numerical weather prediction)中,SVD对大型矩阵也有重要应用。利用Lanczos方法,可以估算在给定初始前向时间段内,对中心数值天气预报线性增长最快的几个扰动。这些扰动实际上是该时间间隔内全球天气线性化传播子对应最大奇异值的奇异向量。在这种情况下,输出奇异向量代表整个天气系统。随后,这些扰动通过完整的非线性模型运行,生成集合预报(ensemble forecast),为当前中心预测周围的不确定性提供了处理方法。
   −
降阶建模(reduced-order modeling)中也少不了SVD的身影。降阶建模旨在减少复杂系统中的自由度数量。研究人员将SVD与径向基函数(radial basis functions)结合,用于插值三维非稳态流问题的解<ref>{{citation | last1=Walton | first1=S. | last2=Hassan | first2=O. | last3=Morgan | first3=K. | date=2013 |url=https://linkinghub.elsevier.com/retrieve/pii/S0307904X13002771| title="Reduced order modelling for unsteady fluid flow using proper orthogonal decomposition and radial basis functions" | journal=Applied Mathematical Modelling | volume=37 | issue=20–21 | pages=8930–8945 | doi=10.1016/j.apm.2013.04.025}}</ref>
+
降阶建模(reduced-order modeling)中也少不了SVD的身影。降阶建模旨在减少复杂系统中的自由度数量。研究人员将SVD与径向基函数(radial basis functions)结合,用于插值三维非稳态流问题的解<ref>{{citation | last1=Walton | first1=S. | last2=Hassan | first2=O. | last3=Morgan | first3=K. | date=2013 |url=https://linkinghub.elsevier.com/retrieve/pii/S0307904X13002771| title="Reduced order modelling for unsteady fluid flow using proper orthogonal decomposition and radial basis functions" | journal=Applied Mathematical Modelling | volume=37 | issue=20–21 | pages=8930–8945 | doi=10.1016/j.apm.2013.04.025}}</ref>。
+
值得一提的是,科学家们已经利用SVD改进了地面引力波干涉仪aLIGO的引力波形建模(gravitational wave modeling)<ref>{{citation | last1=Setyawati | first1=Y. | last2=Ohme | first2=F. | last3=Khan | first3=S. | date=2019 | title="Enhancing gravitational waveform model through dynamic calibration" | journal=Physical Review D | volume=99 | issue=2 | pages=024010 | doi=10.1103/PhysRevD.99.024010 | arxiv=1810.07060 | bibcode=2019PhRvD..99b4010S | s2cid=118935941}}</ref>。SVD有助于提高波形生成的准确性和速度,支持引力波搜索和更新两种不同的波形模型。
值得一提的是,科学家们已经利用SVD改进了地面引力波干涉仪aLIGO的引力波形建模(gravitational wave modeling)。<ref>{{citation | last1=Setyawati | first1=Y. | last2=Ohme | first2=F. | last3=Khan | first3=S. | date=2019 | title="Enhancing gravitational waveform model through dynamic calibration" | journal=Physical Review D | volume=99 | issue=2 | pages=024010 | doi=10.1103/PhysRevD.99.024010 | arxiv=1810.07060 | bibcode=2019PhRvD..99b4010S | s2cid=118935941}}</ref>SVD有助于提高波形生成的准确性和速度,支持引力波搜索和更新两种不同的波形模型。
     −
[[推荐系统]](Recommender systems)中,SVD用于预测用户对项目的评分。<ref>{{citation | last1=Sarwar | first1=Badrul | last2=Karypis | first2=George | last3=Konstan | first3=Joseph A. | last4=Riedl | first4=John T. | date=2000 |url=https://files.grouplens.org/papers/webKDD00.pdf| title="Application of Dimensionality Reduction in Recommender System – A Case Study" | publisher=University of Minnesota}}</ref>为了在商品机器集群上高效计算SVD,研究人员开发了分布式算法<ref>{{citation | last1=Bosagh Zadeh | first1=Reza | last2=Carlsson | first2=Gunnar | date=2013 |url=https://stanford.edu/~rezab/papers/dimsum.pdf| title="Dimension Independent Matrix Square Using MapReduce" | arxiv=1304.1467 | bibcode=2013arXiv1304.1467B}}</ref>
+
[[推荐系统]](Recommender systems)中,SVD用于预测用户对项目的评分<ref>{{citation | last1=Sarwar | first1=Badrul | last2=Karypis | first2=George | last3=Konstan | first3=Joseph A. | last4=Riedl | first4=John T. | date=2000 |url=https://files.grouplens.org/papers/webKDD00.pdf| title="Application of Dimensionality Reduction in Recommender System – A Case Study" | publisher=University of Minnesota}}</ref>。为了在商品机器集群上高效计算SVD,研究人员开发了分布式算法<ref>{{citation | last1=Bosagh Zadeh | first1=Reza | last2=Carlsson | first2=Gunnar | date=2013 |url=https://stanford.edu/~rezab/papers/dimsum.pdf| title="Dimension Independent Matrix Square Using MapReduce" | arxiv=1304.1467 | bibcode=2013arXiv1304.1467B}}</ref>。
   
低秩SVD在从时空数据中检测热点方面表现出色,已应用于疾病爆发检测<ref>{{citation | last1=Fanaee Tork | first1=Hadi | last2=Gama | first2=João | date=September 2014 | title="Eigenspace method for spatiotemporal hotspot detection" | journal=Expert Systems | volume=32 | issue=3 | pages=454–464 | doi=10.1111/exsy.12088 | arxiv=1406.3506 | bibcode=2014arXiv1406.3506F|s2cid=15476557}}</ref>。研究人员还将SVD和高阶SVD结合起来,用于疾病监测中从复杂数据流(具有空间和时间维度的多变量数据)进行实时事件检测<ref>{{citation | last1=Fanaee Tork | first1=Hadi | last2=Gama | first2=João | date=May 2015 | title="EigenEvent: An Algorithm for Event Detection from Complex Data Streams in Syndromic Surveillance" | journal=Intelligent Data Analysis | volume=19 | issue=3 | pages=597–616 | doi=10.3233/IDA-150734 | arxiv=1406.3496|s2cid=17966555}}</ref>。
 
低秩SVD在从时空数据中检测热点方面表现出色,已应用于疾病爆发检测<ref>{{citation | last1=Fanaee Tork | first1=Hadi | last2=Gama | first2=João | date=September 2014 | title="Eigenspace method for spatiotemporal hotspot detection" | journal=Expert Systems | volume=32 | issue=3 | pages=454–464 | doi=10.1111/exsy.12088 | arxiv=1406.3506 | bibcode=2014arXiv1406.3506F|s2cid=15476557}}</ref>。研究人员还将SVD和高阶SVD结合起来,用于疾病监测中从复杂数据流(具有空间和时间维度的多变量数据)进行实时事件检测<ref>{{citation | last1=Fanaee Tork | first1=Hadi | last2=Gama | first2=João | date=May 2015 | title="EigenEvent: An Algorithm for Event Detection from Complex Data Streams in Syndromic Surveillance" | journal=Intelligent Data Analysis | volume=19 | issue=3 | pages=597–616 | doi=10.3233/IDA-150734 | arxiv=1406.3496|s2cid=17966555}}</ref>。
  
2,464

个编辑

导航菜单