更改

跳到导航 跳到搜索
第29行: 第29行:     
</math>
 
</math>
# 确定性:如果原因只有一个结果,即<math>P=1</math>,则该熵项为零;如果原因具有完全随机的结果,则熵最大,即<math>log_2n</math>,用<math>H (e | c) </math>表示原因导致结果的概率分布的熵,用公式表示为<math>\begin{aligned}H(e\mid c)=\sum_{e\in E}P(e\mid c)\log_2\frac{1}{P(e\mid c)}\end{aligned} </math>。因此,我们将原因<math>c</math>的确定性定义为<math>log_2n - H (e | c) </math>。
+
# 确定性:如果原因只有一个结果,即<math>P=1</math>,则该熵项为零;如果原因具有完全随机的结果,则熵最大,即<math>log_2n</math>,其中<math>n</math>为所有可能结果的数量,用<math>H (e | c) </math>表示原因导致结果的概率分布的熵,用公式表示为<math>\begin{aligned}H(e\mid c)=\sum_{e\in E}P(e\mid c)\log_2\frac{1}{P(e\mid c)}\end{aligned} </math>。因此,我们将原因<math>c</math>的确定性定义为<math>log_2n - H (e | c) </math>。我们将它做归一化处理,可以创建一个确定性系数<math>det </math>,对于给定的原因,该系数的范围与充分性一样,在 0(完全随机)和 1(完全确定性)之间,公式为<math>det(c)=1-\frac{H(e\mid c)}{\log_2n} </math>。通过这个公式,我们可以定义一个单个因果转换的确定性系数<math>det(e,c)=1-\frac{\log_2\frac{1}{P(e|c)}}{\log_2n} </math>以及系统级确定性系数<math>det=\sum\limits_{c\in C}P(c) det(c)=\sum\limits_{e\in E, c\in C}P(e,c) det(e,c)=1-\frac{\sum\limits_{c\in C}P(c) H(e\mid c)}{\log_2n} </math>。
 +
# 简并性:简并性是必要性的一种推广,如果所有可能的结果都有相同的概率,即没有任何一个结果比其他结果更有可能,那么简并性为零。如果某些特定的结果由更多的原因引起,那么这些特定的结果就更有可能发生,从而导致简并性增加。简并性的量化可以用一组原因<math>C</math>导致<math>e</math>发生的条件概率的熵来衡量,公式为<math>\begin{aligned}H(e\mid C)=\sum_{e\in E}P(e\mid C)\log_2\frac{1}{P(e\mid C)}\end{aligned}</math>。通过这个公式,我们可以定义一个单个因果效应的简并性系数<math>deg(e)=1-\frac{\log_2\frac{1}{P(e|C)}}{\log_2n}</math>以及系统级简并性系数<math>deg=\sum_{e\in E}P(e\mid c) deg(e)=1-\frac{H(e\mid C)}{\log_{2}n}</math>。
195

个编辑

导航菜单