更改

跳到导航 跳到搜索
第58行: 第58行:  
=====因果涌现充分指标=====
 
=====因果涌现充分指标=====
   −
在PID框架中,基于协同信息的概念,Rosas引入了使用 <math> \Phi ID </math> 框架的因果涌现的定量定义,以应对确定适当粗粒化策略的挑战。该定义包括两个方面:首先,确定系统是否具有生成因果涌现的能力;其次,评估在特定宏观特征下因果涌现的发生。
关于系统展示因果涌现的能力,该定义建立了因果涌现与不同时间点变量之间协同关系之间的联系。因此,如果且仅当系统Xt被表示为具有因果涌现特征的能力时:</nowiki>
+
在PID框架中,基于协同信息的概念,Rosas引入了使用 <math> \Phi ID </math> 框架的因果涌现的定量定义,以应对确定适当粗粒化策略的挑战。该定义包括两个方面:首先,确定系统是否具有生成因果涌现的能力;其次,评估在特定宏观特征下因果涌现的发生。
关于系统展示因果涌现的能力,该定义建立了因果涌现与不同时间点变量之间协同关系之间的联系。因此,如果且仅当系统Xt被表示为具有因果涌现特征的能力时:
Syn(Xt; Xt+1) > 0
+
<math> Syn(X_{t}; X_{t+1}) > 0 </math>
    
在这种背景下,因果涌现被理解为在马尔可夫动力系统中,先前时刻和后续时刻变量之间的协同效应。然后,Rosas在ϕID框架中进一步将因果涌现分为两个部分,向下因果性和因果解耦,这是基于信息原子的不同特征。通过使用ϕID分解互信息I(Xt; Xt+1)得到的十六个ϕID原子中,有四个信息原子对应于协同效应,这被视为因果涌现的组成。这些原子表示为I∂{12}→α(Xt, Xt+1),其中<math>\alpha \in  A = \{\{\{1\}\{2\}\}, \{1\}, \{2\}, \{12\}\} </math>。
 
在这种背景下,因果涌现被理解为在马尔可夫动力系统中,先前时刻和后续时刻变量之间的协同效应。然后,Rosas在ϕID框架中进一步将因果涌现分为两个部分,向下因果性和因果解耦,这是基于信息原子的不同特征。通过使用ϕID分解互信息I(Xt; Xt+1)得到的十六个ϕID原子中,有四个信息原子对应于协同效应,这被视为因果涌现的组成。这些原子表示为I∂{12}→α(Xt, Xt+1),其中<math>\alpha \in  A = \{\{\{1\}\{2\}\}, \{1\}, \{2\}, \{12\}\} </math>。
2,435

个编辑

导航菜单