更改

跳到导航 跳到搜索
第67行: 第67行:  
对于这个定义,系统的因果涌现能力是必需的,其中 <math> \text{Syn}(X_{t}; X_{t+1}) > 0 </math> ,因为对于任何超涌现特征 Vt,都有 <math> \text{Un}(V_{t}; X_{t+1} \mid X_{t}) \leq \text{Syn}(X_{t}; X_{t+1}) </math>成立。对应于系统能力的分类,当 <math> \text{Un}(V_{t}; X_{t+1} \mid X_{t}) > 0 </math>或者 <math> \text{Un}(V_{t}; X_{t}^{2} + 1 \mid X_{t}) > 0 </math>时,特征变量 V 存在向下的因果作用。
 
对于这个定义,系统的因果涌现能力是必需的,其中 <math> \text{Syn}(X_{t}; X_{t+1}) > 0 </math> ,因为对于任何超涌现特征 Vt,都有 <math> \text{Un}(V_{t}; X_{t+1} \mid X_{t}) \leq \text{Syn}(X_{t}; X_{t+1}) </math>成立。对应于系统能力的分类,当 <math> \text{Un}(V_{t}; X_{t+1} \mid X_{t}) > 0 </math>或者 <math> \text{Un}(V_{t}; X_{t}^{2} + 1 \mid X_{t}) > 0 </math>时,特征变量 V 存在向下的因果作用。
   −
当 <math> \text{Un}(V_{t}; V_{t+1} \mid X_{t}, X_{t+1}) > 0 </math> 时,存在因果解耦,这也取决于系统的容量。此外,如果 <math> \text{Un}(V_{t}; X_{t}^{\alpha} + 1 \mid X_{t}) = 0 </math>且 ,则称 Vt 具有纯粹的因果解耦。如果所有涌现特征都表现出纯粹的因果解耦,则称系统是完全解耦的。
+
当 <math> \text{Un}(V_{t}; V_{t+1} \mid X_{t}, X_{t+1}) > 0 </math> 时,存在因果解耦,这也取决于系统的容量。此外,如果 <math> \text{Un}(V_{t}; X_{t}^{\alpha} + 1 \mid X_{t}) = 0 </math>且 ,则称<math>Vt</math> 具有纯粹的因果解耦。如果所有涌现特征都表现出纯粹的因果解耦,则称系统是完全解耦的。
      第80行: 第80行:  
1. <math> \Psi_{t, t+1}(V) := I(V_{t}; V_{t+1}) - \sum_{j} I(X_{tj}; V_{t+1}) </math>,这个指标衡量的是两个时间步长之间宏观变量的互信息减去每个微观状态与宏观状态之间的互信息。
 
1. <math> \Psi_{t, t+1}(V) := I(V_{t}; V_{t+1}) - \sum_{j} I(X_{tj}; V_{t+1}) </math>,这个指标衡量的是两个时间步长之间宏观变量的互信息减去每个微观状态与宏观状态之间的互信息。
   −
2. <math> \Delta_{t, t+1}(V) := \max_{j} I(V_{t}; X_{tj+1}) - \sum_{i} I(X_{ti}; X_{tj+1}) </math>,这个指标是Vt与Xtj+1之间互信息的最大值与Xti与Xtj+1之间互信息总和之间的差的最大值。
+
2. <math> \Delta_{t, t+1}(V) := \max_{j} I(V_{t}; X_{t+1}^j) - \sum_{i} I(X_{t}^i; X_{t+1}^j) </math>,这个指标是<math>V_t</math>与<math>X_{t+1}^j</math>之间互信息的最大值与<math>X_{t}^i</math>与<math>X_{t+1}^j</math>之间互信息总和之间的差的最大值。
   −
3. <math> \Gamma_{t, t+1}(V) := \max_{j} I(V_{t}; X_{tj+1}) </math>,这个指标是Vt与Xtj+1之间最大互信息。
+
3. <math> \Gamma_{t, t+1}(V) := \max_{j} I(V_{t}; X_{t+1}^j) </math>,这个指标是<math>V_t</math>与<math>X_{t+1}^j</math>之间最大互信息。
    
对于上述指标,V是一个预定义的宏观变量。
这些指标的具体用途如下:

 
对于上述指标,V是一个预定义的宏观变量。
这些指标的具体用途如下:

第90行: 第90行:  
2. 当<math> \Delta_{t, t+1}(V) > 0 </math> ,这是Vt表现出向下因果的充分条件。
 
2. 当<math> \Delta_{t, t+1}(V) > 0 </math> ,这是Vt表现出向下因果的充分条件。
   −
3. 当<math> \Psi_{t, t+1}(V) > 0  </math>且Γt,t+1(V) = 0时,这构成了因果解耦的充分条件。
+
3. 当<math> \Psi_{t, t+1}(V) > 0  </math>且<math>\Gamma_{t, t+1}(V) = 0</math>时,这构成了因果解耦的充分条件。
    
总的来说,Rosas提出了一种基于<math> \Phi ID </math>的定量表征和分类因果涌现的方法,通过建立因果涌现与不同时间点变量的协同效应之间的关系,并进一步对因果涌现进行了分类。该定义不仅提供了对系统因果出现能力的客观评估,而且能够衡量与特定宏观特征相关的因果出现。他的重要贡献包括弥合因果出现研究与定量实证研究之间的差距,对不同类型的因果出现进行分类,以及补充关于这一主题的哲学讨论。
 
总的来说,Rosas提出了一种基于<math> \Phi ID </math>的定量表征和分类因果涌现的方法,通过建立因果涌现与不同时间点变量的协同效应之间的关系,并进一步对因果涌现进行了分类。该定义不仅提供了对系统因果出现能力的客观评估,而且能够衡量与特定宏观特征相关的因果出现。他的重要贡献包括弥合因果出现研究与定量实证研究之间的差距,对不同类型的因果出现进行分类,以及补充关于这一主题的哲学讨论。
2,435

个编辑

导航菜单