实际上,如果<math>\sum_{j=1}^n x^j_t</math>是偶数或者0时<math>\oplus^n_{j=1} x^j_t:=1</math>,反之<math>\oplus^n_{j=1} x^j_t:=0</math>,因此<math>\oplus^n_{j=1} x^j_t</math>的结果是X整体序列的奇偶性,而第一个维度则可以看作是一个奇偶校验位。<math>\gamma</math>实际上表示X序列某两个位产生了突变,并且该突变却能够保证整体序列的奇偶性不变,以及序列的奇偶校验位也符合序列整体的实际奇偶性的概率。 | 实际上,如果<math>\sum_{j=1}^n x^j_t</math>是偶数或者0时<math>\oplus^n_{j=1} x^j_t:=1</math>,反之<math>\oplus^n_{j=1} x^j_t:=0</math>,因此<math>\oplus^n_{j=1} x^j_t</math>的结果是X整体序列的奇偶性,而第一个维度则可以看作是一个奇偶校验位。<math>\gamma</math>实际上表示X序列某两个位产生了突变,并且该突变却能够保证整体序列的奇偶性不变,以及序列的奇偶校验位也符合序列整体的实际奇偶性的概率。 |