在这种背景下,因果涌现被理解为在马尔可夫动力系统中,先前时刻和后续时刻变量之间的协同效应。然后,Rosas在<math> \Phi ID </math>框架中进一步将因果涌现分为两个部分,向下因果性和因果解耦,这是基于信息原子的不同特征。通过使用<math> \Phi ID </math>分解互信息<math> I(X_{t}; X_{t+1}) </math>得到的十六个信息原子中,有四个信息原子对应于协同效应,这被视为因果涌现的组成。这些原子表示为,其中<math>\alpha \in A = \{\{\{1\}\{2\}\}, \{1\}, \{2\}, \{12\}\} </math>。 | 在这种背景下,因果涌现被理解为在马尔可夫动力系统中,先前时刻和后续时刻变量之间的协同效应。然后,Rosas在<math> \Phi ID </math>框架中进一步将因果涌现分为两个部分,向下因果性和因果解耦,这是基于信息原子的不同特征。通过使用<math> \Phi ID </math>分解互信息<math> I(X_{t}; X_{t+1}) </math>得到的十六个信息原子中,有四个信息原子对应于协同效应,这被视为因果涌现的组成。这些原子表示为,其中<math>\alpha \in A = \{\{\{1\}\{2\}\}, \{1\}, \{2\}, \{12\}\} </math>。 |