The causal emergence framework has many similarities with computational mechanics. All historical processes <math>\overleftarrow{s}</math> can be regarded as microscopic states. All <math>R \in \mathcal{R}</math> correspond to macroscopic states. The function <math>\eta</math> can be understood as a possible coarse-graining function. The causal state <math>\epsilon \left ( \overleftarrow{s} \right )</math> is a special state that can at least have the same predictive power as the microscopic state <math>\overleftarrow{s}</math>. Therefore, <math>\epsilon</math> can be understood as an effective [[coarse-graining]] strategy. Causal transfer <math>T</math> corresponds to effective macroscopic dynamics. The characteristic of minimum randomness characterizes the determinism of macroscopic dynamics and can be measured by [[effective information]] in causal emergence. | The causal emergence framework has many similarities with computational mechanics. All historical processes <math>\overleftarrow{s}</math> can be regarded as microscopic states. All <math>R \in \mathcal{R}</math> correspond to macroscopic states. The function <math>\eta</math> can be understood as a possible coarse-graining function. The causal state <math>\epsilon \left ( \overleftarrow{s} \right )</math> is a special state that can at least have the same predictive power as the microscopic state <math>\overleftarrow{s}</math>. Therefore, <math>\epsilon</math> can be understood as an effective [[coarse-graining]] strategy. Causal transfer <math>T</math> corresponds to effective macroscopic dynamics. The characteristic of minimum randomness characterizes the determinism of macroscopic dynamics and can be measured by [[effective information]] in causal emergence. |