更改

跳到导航 跳到搜索
第250行: 第250行:  
'''粗粒化映射''':根据系统的分组机制,同组元素的状态之间不会互相影响,接受相同元素的输入且机制相同,因此同组元素是独立等价的,可以被映射为同一个宏观元素。微观系统[math]S_m = \{ABCD\}[/math]可以被粗粒化为有两个宏观元素[math]{α, β}[/math]的宏观系统[math]S_M[/math](图B)。考虑微观状态的转移机制(图A右侧),输入值00,01和10决定状态的规则相同,输入值11对应另一种,因此每个宏观元素状态可以映射为{"off" ,"on"}两种(图D)。
 
'''粗粒化映射''':根据系统的分组机制,同组元素的状态之间不会互相影响,接受相同元素的输入且机制相同,因此同组元素是独立等价的,可以被映射为同一个宏观元素。微观系统[math]S_m = \{ABCD\}[/math]可以被粗粒化为有两个宏观元素[math]{α, β}[/math]的宏观系统[math]S_M[/math](图B)。考虑微观状态的转移机制(图A右侧),输入值00,01和10决定状态的规则相同,输入值11对应另一种,因此每个宏观元素状态可以映射为{"off" ,"on"}两种(图D)。
   −
'''宏观尺度''':将系统以等概率设置为从[off, off]到[on, on]的所有可能的宏观状态,可以得到 4 × 4 的[math]S_M[/math] 宏观状态转移矩阵(图E),计算得到宏观尺度下[math]EI(S_M) = 1.55 \text{ bits}[/math],高于微观尺度的[math]EI(S_m) = 1.15 \text{ bits}[/math]。因此,因果涌现度量[math]CE(S) = EI(S_M) - EI(S_m) 0.40 \text{ bits}[/math],宏观的因果性优于微观,因果涌现发生。
+
'''宏观尺度''':将系统以等概率设置为从[off, off]到[on, on]的所有可能的宏观状态,可以得到 4 × 4 的[math]S_M[/math] 宏观状态转移矩阵(图E),计算得到宏观尺度下[math]EI(S_M) = 1.55 \text{ bits}[/math],高于微观尺度的[math]EI(S_m) = 1.15 \text{ bits}[/math]。因此,因果涌现度量[math]CE(S) = EI(S_M) - EI(S_m) = 0.40 \text{ bits}[/math],宏观的因果性优于微观,因果涌现发生。
    
[math]S_M[/math]的概率转移矩阵更接近于完美的有效性([math]Eff(S_M) = 0.78[/math])。本例中,在宏观尺度的有效性[math]\Delta I_{Eff}[/math]的增益主要来自于减少噪声干扰,即确定性(Det)提高([math]Det(S_m) = 0.34[/math]; [math]Det(S_M) = 0.78[/math]),少部分来源于简并性(Deg)减少([math]Deg(S_m) = 0.05[/math]; [math]Deg(S_M) = 0.006[/math])。
 
[math]S_M[/math]的概率转移矩阵更接近于完美的有效性([math]Eff(S_M) = 0.78[/math])。本例中,在宏观尺度的有效性[math]\Delta I_{Eff}[/math]的增益主要来自于减少噪声干扰,即确定性(Det)提高([math]Det(S_m) = 0.34[/math]; [math]Det(S_M) = 0.78[/math]),少部分来源于简并性(Deg)减少([math]Deg(S_m) = 0.05[/math]; [math]Deg(S_M) = 0.006[/math])。
2,435

个编辑

导航菜单