更改

跳到导航 跳到搜索
无编辑摘要
第29行: 第29行:  
这种传统测度局限性的一个体现就是变量间的协同效应:假设我们有两个独立的布尔变量作为源变量 <math>X_1, X_2 \in \{0,1\></math> 和一个通过对源变量进行抑或操作所得到的目标变量 <math>Y=XOR(X_1,X_2)</math>。在这种情况下,总互信息 <math>I(X_1,X_2;Y)=1</math>,而个体互信息 <math>I(X_1;Y)=I(X_2;Y)=0</math>。也就是说,<math>X_1,X_2</math> 关于 <math>Y</math> 的相互作用产生了协同信息,而这无法用经典信息论中的互信息或是信息熵量轻易捕捉到。
 
这种传统测度局限性的一个体现就是变量间的协同效应:假设我们有两个独立的布尔变量作为源变量 <math>X_1, X_2 \in \{0,1\></math> 和一个通过对源变量进行抑或操作所得到的目标变量 <math>Y=XOR(X_1,X_2)</math>。在这种情况下,总互信息 <math>I(X_1,X_2;Y)=1</math>,而个体互信息 <math>I(X_1;Y)=I(X_2;Y)=0</math>。也就是说,<math>X_1,X_2</math> 关于 <math>Y</math> 的相互作用产生了协同信息,而这无法用经典信息论中的互信息或是信息熵量轻易捕捉到。
   −
对于更加一般的三变量场景而言,部分信息分解将源变量 <math>\{X_1,X_2\></math> 与目标变量 <math>Y</math> 之间的互信息分解为四个部分:[[文件:PID Venn.png|替代=|左|无框]]<math>I(X_1,X_2;Y)=\text{Unq}(X_1;Y \setminus X_2) + \text{Unq}(X_2;Y \setminus X_1) + \text{Syn}(X_1,X_2;Y) + \text{Red}(X_1,X_2;Y)</math>
+
对于更加一般的三变量场景而言,部分信息分解将源变量 <math>\{X_1,X_2\></math> 与目标变量 <math>Y</math> 之间的互信息分解为如下图所示的四个部分:[[文件:PID Venn.png|替代=|左|无框]]<math>I(X_1,X_2;Y)=\text{Unq}(X_1;Y \setminus X_2) + \text{Unq}(X_2;Y \setminus X_1) + \text{Syn}(X_1,X_2;Y) + \text{Red}(X_1,X_2;Y)</math>
    
此处各个信息原子定义为
 
此处各个信息原子定义为
第130行: 第130行:  
1. 因果涌现:在复杂系统中,宏观层面的因果关系可能比微观层面更加明显,即宏观层面的因果关系能够解释更多的现象。

 
1. 因果涌现:在复杂系统中,宏观层面的因果关系可能比微观层面更加明显,即宏观层面的因果关系能够解释更多的现象。

   −
2. ϕID(phiID):一种用来衡量因果涌现的方法,但其数学公式复杂且计算量大,难以应用于现实世界系统。
+
2. 整合信息论(<math> \Phi ID </math>):一种用来衡量因果涌现的方法,但其数学公式复杂且计算量大,难以应用于现实世界系统。
    
3. PID计算:一种计算方法,由于其不一致性,导致因果涌现的定义依赖于特定的PID计算方法。

 
3. PID计算:一种计算方法,由于其不一致性,导致因果涌现的定义依赖于特定的PID计算方法。

2,435

个编辑

导航菜单