Therefore, the macroscopic state of this process can be regarded as the parity of the sum of all dimensions of the entire sequence, and the probability distribution of this parity is the result of the exclusive OR calculation of the microstate. <math>x_{t + 1}^1</math> is a special microstate that always remains consistent with the macroscopic state of the sequence at the previous moment. Therefore, when only the first item in the second judgment condition is satisfied, the downward causation condition of the system occurs. When only the second item is satisfied, the causal decoupling of the system occurs. When both items are satisfied simultaneously, it is said that causal emergence occurs in the system. | Therefore, the macroscopic state of this process can be regarded as the parity of the sum of all dimensions of the entire sequence, and the probability distribution of this parity is the result of the exclusive OR calculation of the microstate. <math>x_{t + 1}^1</math> is a special microstate that always remains consistent with the macroscopic state of the sequence at the previous moment. Therefore, when only the first item in the second judgment condition is satisfied, the downward causation condition of the system occurs. When only the second item is satisfied, the causal decoupling of the system occurs. When both items are satisfied simultaneously, it is said that causal emergence occurs in the system. |