第二种变体中,超图中的边可以指向其他边,同时不用考虑必须形成有向非循环图的要求。这允许超图具有边的循环,而不需要有任何节点。例如,考虑由两条边e1和e2组成的,节点个数为零的广义超图,使得<math>e_1 = \{e_2\}</math>且<math>e_2 = \{e_1\}</math>。因为这个循环是无限递归的,所以边的集合违反了基础公理。具体来说,对于这样的超图,不存在节点集的封闭传递。虽然这样的结构乍看起来可能很奇怪,但只要注意到它的Levi图的等价延伸不再是二分图,而是一般的有向图,就可以很容易地去理解。 | 第二种变体中,超图中的边可以指向其他边,同时不用考虑必须形成有向非循环图的要求。这允许超图具有边的循环,而不需要有任何节点。例如,考虑由两条边e1和e2组成的,节点个数为零的广义超图,使得<math>e_1 = \{e_2\}</math>且<math>e_2 = \{e_1\}</math>。因为这个循环是无限递归的,所以边的集合违反了基础公理。具体来说,对于这样的超图,不存在节点集的封闭传递。虽然这样的结构乍看起来可能很奇怪,但只要注意到它的Levi图的等价延伸不再是二分图,而是一般的有向图,就可以很容易地去理解。 |