更改

跳到导航 跳到搜索
添加2,617字节 、 2020年4月22日 (三) 17:42
第172行: 第172行:  
无环性的四个概念具有可比性: berge-无环性意味着 <math> {\gamma}</math>- 无环性, <math> {\gamma}</math>- 无环性又意味着  <math> {\beta}</math>- 无环性, <math> {\beta}</math>- 无环性又可以推出  <math> {\alpha}</math> 无环性。 然而,反之均不成立。<ref name="fagin1983degrees" />
 
无环性的四个概念具有可比性: berge-无环性意味着 <math> {\gamma}</math>- 无环性, <math> {\gamma}</math>- 无环性又意味着  <math> {\beta}</math>- 无环性, <math> {\beta}</math>- 无环性又可以推出  <math> {\alpha}</math> 无环性。 然而,反之均不成立。<ref name="fagin1983degrees" />
   −
==Isomorphism and equality==
+
==同构和相等 Isomorphism and equality==
 
A hypergraph [[homomorphism]] is a map from the vertex set of one hypergraph to another such that each edge maps to one other edge.
 
A hypergraph [[homomorphism]] is a map from the vertex set of one hypergraph to another such that each edge maps to one other edge.
   −
A hypergraph <math>H=(X,E)</math> is ''isomorphic'' to a hypergraph <math>G=(Y,F)</math>,  written as <math>H \simeq G</math> if there exists a [[bijection]]
+
超图同态 homomorphism是指从一个超图的顶点集到另一个超图的顶点集的映射,如此使得每条边映射到另一条边。
 +
 
 +
A hypergraph <math>H=(X,E)</math> is ''isomorphic'' to a hypergraph <math>G=(Y,F)</math>,  written as <math>H \simeq G</math> if there exists a [[bijection]]  
    
:<math>\phi:X \to Y</math>
 
:<math>\phi:X \to Y</math>
第186行: 第188行:     
:<math>H \simeq G</math> if and only if <math>H^* \simeq G^*</math>.
 
:<math>H \simeq G</math> if and only if <math>H^* \simeq G^*</math>.
 +
 +
 +
如果一个超图 <math>H=(X,E)</math>同构 isomorphic 与另外一个超图<math>G=(Y,F)</math>,则存在一个双射:<math>H \simeq G</math> :<math>\phi:X \to Y</math>
 +
 +
和 关于<math>I</math>的置换 permutation 使得: :<math>\phi(e_i) = f_{\pi(i)}</math>
 +
 +
那么这个双射被称为图的同构 isomorphism,记作:<math>H \simeq G</math>但且仅当<math>H^* \simeq G^*</math>。
 +
    
When the edges of a hypergraph are explicitly labeled, one has the additional notion of ''strong isomorphism''. One says that <math>H</math> is ''strongly isomorphic'' to <math>G</math> if the permutation is the identity. One then writes <math>H \cong G</math>.  Note that all strongly isomorphic graphs are isomorphic, but not vice versa.
 
When the edges of a hypergraph are explicitly labeled, one has the additional notion of ''strong isomorphism''. One says that <math>H</math> is ''strongly isomorphic'' to <math>G</math> if the permutation is the identity. One then writes <math>H \cong G</math>.  Note that all strongly isomorphic graphs are isomorphic, but not vice versa.
第200行: 第210行:     
:<math>H\equiv G</math> if and only if <math>H^* \cong G^*</math>
 
:<math>H\equiv G</math> if and only if <math>H^* \cong G^*</math>
 +
    
If, in addition, the permutation <math>\pi</math> is the identity, one says that <math>H</math> equals <math>G</math>, and writes <math>H=G</math>.  Note that, with this definition of equality, graphs are self-dual:
 
If, in addition, the permutation <math>\pi</math> is the identity, one says that <math>H</math> equals <math>G</math>, and writes <math>H=G</math>.  Note that, with this definition of equality, graphs are self-dual:
第207行: 第218行:  
A hypergraph [[automorphism]] is an isomorphism from a vertex set into itself, that is a relabeling of vertices. The set of automorphisms of a hypergraph ''H'' (= (''X'',&nbsp;''E'')) is a [[group (mathematics)|group]] under composition, called the [[automorphism group]] of the hypergraph and written Aut(''H'').
 
A hypergraph [[automorphism]] is an isomorphism from a vertex set into itself, that is a relabeling of vertices. The set of automorphisms of a hypergraph ''H'' (= (''X'',&nbsp;''E'')) is a [[group (mathematics)|group]] under composition, called the [[automorphism group]] of the hypergraph and written Aut(''H'').
   −
===Examples===
+
 
 +
当超图的边被明确标记时,就有了'''“强同构 strong isomorphism ”'''这个新的概念。 当前面提及的置换是唯一的,则称<math>H</math> 强同构于 <math>G</math> 。 记作<math>H \cong G</math>。 注意,所有强同构图都是同构的,但反过来就不成立。
 +
 
 +
当超图的顶点被明确标记时,就有了'''“等价 equivalence”'''和'''“相等 equality”'''的概念。 我们称<math>H</math>和<math>G</math>等价记作:<math>H\equiv G</math> 如果同构<math>\phi</math> 满足:
 +
 
 +
<math>\phi(x_n) = y_n</math>
 +
 
 +
而且:
 +
 
 +
<math>\phi(e_i) = f_{\pi(i)}</math>
 +
 
 +
记作:
 +
<math>H\equiv G</math> 当且仅当 <math>H^* \cong G^*</math>
 +
 
 +
超图'''自同构 automorphism'''是从顶点集到自身的同构,也就是顶点的重标号。 超图“ <math>{H }</math>”(= (''X'',&nbsp;''E''))的自同构集合是超图的群 group,称为超图的'''自同构群 automorphism group''',并写成 <math>{Aut(''H'')}</math>。
 +
 
 +
===例子 Examples===
 
Consider the hypergraph <math>H</math> with edges
 
Consider the hypergraph <math>H</math> with edges
 
:<math>H = \lbrace
 
:<math>H = \lbrace
第236行: 第263行:     
In this example, <math>H</math> and <math>G</math> are equivalent, <math>H\equiv G</math>, and the duals are strongly isomorphic: <math>H^*\cong G^*</math>.
 
In this example, <math>H</math> and <math>G</math> are equivalent, <math>H\equiv G</math>, and the duals are strongly isomorphic: <math>H^*\cong G^*</math>.
 +
考虑超图<math>H</math>,他的边为:
 +
 +
<math>H = \lbrace
 +
e_1 = \lbrace a,b \rbrace,
 +
e_2 = \lbrace b,c \rbrace,
 +
e_3 = \lbrace c,d \rbrace,
 +
e_4 = \lbrace d,a \rbrace,
 +
e_5 = \lbrace b,d \rbrace,
 +
e_6 = \lbrace a,c \rbrace
 +
\rbrace</math>
 +
 +
和超图<math>G</math>:
 +
 +
<math>G = \lbrace
 +
f_1 = \lbrace \alpha,\beta \rbrace,
 +
f_2 = \lbrace \beta,\gamma \rbrace,
 +
f_3 = \lbrace \gamma,\delta \rbrace,
 +
f_4 = \lbrace \delta,\alpha \rbrace,
 +
f_5 = \lbrace \alpha,\gamma \rbrace,
 +
f_6 = \lbrace \beta,\delta \rbrace
 +
\rbrace</math>
 +
 +
很明显 <math>H</math> 和 <math>G</math> 同构(有<math>\phi(a)=\alpha</math>等),但是他们不是强同构,因为比如在超图<math>H</math>中,<math>a</math> 顶点连接1,4,6三条边,所以:
 +
 +
<math>e_1 \cap e_4 \cap e_6 = \lbrace a\rbrace</math>
 +
 +
在图<math>G</math>,,不存在连接边1,4,6的顶点:
 +
 +
<math>f_1 \cap f_4 \cap f_6 = \varnothing</math>
 +
 +
在这个例子,<math>H</math> 和 <math>G</math>是等价的, <math>H\equiv G</math>,而且两者强同构的:<math>H^*\cong G^*</math>
    
==Symmetric hypergraphs==
 
==Symmetric hypergraphs==
1,526

个编辑

导航菜单