第81行: |
第81行: |
| * 𝑘-均匀超图:每条超边都正好包含 k 个顶点的超图。 | | * 𝑘-均匀超图:每条超边都正好包含 k 个顶点的超图。 |
| * 𝑑-正则超图:每个顶点的度数都是 𝑑 的超图 | | * 𝑑-正则超图:每个顶点的度数都是 𝑑 的超图 |
− | * 非循环超图:不包含任何循环的超图。 | + | * 无环超图:不包含任何圈的超图。 |
| | | |
| Because hypergraph links can have any cardinality, there are several notions of the concept of a subgraph, called ''subhypergraphs'', ''partial hypergraphs'' and ''section hypergraphs''. | | Because hypergraph links can have any cardinality, there are several notions of the concept of a subgraph, called ''subhypergraphs'', ''partial hypergraphs'' and ''section hypergraphs''. |
第570行: |
第570行: |
| * Claude Berge, "Hypergraphs: Combinatorics of finite sets". North-Holland, 1989. | | * Claude Berge, "Hypergraphs: Combinatorics of finite sets". North-Holland, 1989. |
| * Claude Berge, Dijen Ray-Chaudhuri, "Hypergraph Seminar, Ohio State University 1972", ''Lecture Notes in Mathematics'' '''411''' Springer-Verlag | | * Claude Berge, Dijen Ray-Chaudhuri, "Hypergraph Seminar, Ohio State University 1972", ''Lecture Notes in Mathematics'' '''411''' Springer-Verlag |
− | * Hazewinkel, Michiel, ed. (2001) [1994], "Hypergraph", [https://en.wikipedia.org/wiki/Encyclopedia_of_Mathematics Encyclopedia of Mathematics], Springer Science+Business Media B.V. / Kluwer Academic Publishers, ISBN 978-1-55608-010-4 | + | * Hazewinkel, Michiel, ed. (2001) [1994], "Hypergraph", [https://en.wikipedia.org/wiki/Encyclopedia_of_Mathematics Encyclopedia of Mathematics], Springer Science+Business Media B.V. / Kluwer Academic Publishers, ISBN |
| * Alain Bretto, "Hypergraph Theory: an Introduction", Springer, 2013. | | * Alain Bretto, "Hypergraph Theory: an Introduction", Springer, 2013. |
| * Vitaly I. Voloshin. "Coloring Mixed Hypergraphs: Theory, Algorithms and Applications". Fields Institute Monographs, American Mathematical Society, 2002. | | * Vitaly I. Voloshin. "Coloring Mixed Hypergraphs: Theory, Algorithms and Applications". Fields Institute Monographs, American Mathematical Society, 2002. |