更改

跳到导航 跳到搜索
大小无更改 、 2020年4月22日 (三) 17:48
无编辑摘要
第399行: 第399行:     
==Hypergraph drawing==
 
==Hypergraph drawing==
[[File:CircuitoDosMallas.png|thumb|This [[circuit diagram]] can be interpreted as a drawing of a hypergraph in which four vertices (depicted as white rectangles and disks) are connected by three hyperedges drawn as trees.]](这个线路图可以解释为一个超图,其中四个顶点(用白色的矩形和圆盘表示)由三个用树表示的超图连接)
+
[[File:CircuitoDosMallas.png|thumb|This [[circuit diagram]] can be interpreted as a drawing of a hypergraph in which four vertices (depicted as white rectangles and disks) are connected by three hyperedges drawn as trees.(这个线路图可以解释为一个超图,其中四个顶点(用白色的矩形和圆盘表示)由三个用树表示的超图连接)]]
    
Although hypergraphs are more difficult to draw on paper than graphs, several researchers have studied methods for the visualization of hypergraphs.
 
Although hypergraphs are more difficult to draw on paper than graphs, several researchers have studied methods for the visualization of hypergraphs.
第460行: 第460行:  
其中一种超图的可视化表示法,类似于标准的图的画法:用平面内的曲线来描绘图边,将超图的顶点画成点状、圆盘或盒子,超边则被描绘成以顶点为叶子的树[16][17]。如果顶点表示为点,超边也可以被描绘成连接点集的平滑曲线,或显示为封闭点集的简单闭合曲线[18][19][20]。  
 
其中一种超图的可视化表示法,类似于标准的图的画法:用平面内的曲线来描绘图边,将超图的顶点画成点状、圆盘或盒子,超边则被描绘成以顶点为叶子的树[16][17]。如果顶点表示为点,超边也可以被描绘成连接点集的平滑曲线,或显示为封闭点集的简单闭合曲线[18][19][20]。  
   −
[[File:Venn's four ellipse construction.svg|thumb|An order-4 Venn diagram, which can be interpreted as a subdivision drawing of a hypergraph with 15 vertices (the 15 colored regions) and 4 hyperedges (the 4 ellipses).]](一个4阶维恩图,可以被解释为一个15个顶点(15个有色区域)和4个超边(4个椭圆)的超图的细分图)
+
[[File:Venn's four ellipse construction.svg|thumb|An order-4 Venn diagram, which can be interpreted as a subdivision drawing of a hypergraph with 15 vertices (the 15 colored regions) and 4 hyperedges (the 4 ellipses).(一个4阶维恩图,可以被解释为一个15个顶点(15个有色区域)和4个超边(4个椭圆)的超图的细分图)]]
    
In another style of hypergraph visualization, the subdivision model of hypergraph drawing,<ref>{{citation
 
In another style of hypergraph visualization, the subdivision model of hypergraph drawing,<ref>{{citation
27

个编辑

导航菜单