更改

跳到导航 跳到搜索
无编辑摘要
第26行: 第26行:     
* 数学定义:
 
* 数学定义:
定义:设M是映射<math> f^{t}</math>的状态空间:如果对于任何<math> x∈M</math>和<math> δ> 0</math>,都存在<math> y∈M</math>和距离<math>d(. , .)</math>使得 <math> 0<d(x,y)<δ</math> 且对于某个正数 <math>a</math> 有 <math>d(f^{t}(x),f^{t}(y))>e^{at}d(x,y) </math>,则映射 <math> f^{t}</math> 表现出对初始条件的敏感依赖性。该定义不要求邻域中的所有点都与基点x分开,而是需要一个正的李雅普诺夫指数(Lyapunov exponent.)。
+
定义:设M是映射<math> f^{t}</math>的状态空间:如果对于任何<math> x∈M</math>和<math> δ> 0</math>,都存在<math> y∈M</math>和距离<math>d(. , .)</math>使得 <math> 0<d(x,y)<δ</math> 且对于某个正数 <math>a</math> 有 <math>d(f^{t}(x),f^{t}(y))>e^{at}d(x,y) </math>,则映射 <math> f^{t}</math> 表现出对初始条件的敏感依赖性。该定义不要求邻域中的所有点都与基点x分开,而是需要一个正的李雅普诺夫指数 Lyapunov exponent。
      第38行: 第38行:  
::<math>x_{n} = sin^{2}(2^{n}θπ).</math>
 
::<math>x_{n} = sin^{2}(2^{n}θπ).</math>
   −
其中初始状态<math>θ=\frac{1}{π} sin^{-1}(x_{0}^{\frac{1}{2}}) </math>,对于有理数 <math>θ</math> ,在有限次数的迭代之后,<math>x_{n}</math> 映射为周期序列。但是几乎所有的  <math>θ</math> 都是无理数的,那么对于无理数的 <math>θ</math> ,<math>x_{n}</math> 永远不会自我重复——因为它是非周期性的。该解决方案方程式清楚地说明了混沌的两个关键特征–拉伸和折叠(stretching and folding):因子 ,<math>2^{n}</math> 显示拉伸的指数增长,这导致对初始条件的敏感依赖(即蝴蝶效应),而正弦平方函数将 ,<math>x_{n}</math> 折叠在[0,1]范围内。
+
其中初始状态<math>θ=\frac{1}{π} sin^{-1}(x_{0}^{\frac{1}{2}}) </math>,对于有理数 <math>θ</math> ,在有限次数的迭代之后,<math>x_{n}</math> 映射为周期序列。但是几乎所有的  <math>θ</math> 都是无理数的,那么对于无理数的 <math>θ</math> ,<math>x_{n}</math> 永远不会自我重复——因为它是非周期性的。该解决方案方程式清楚地说明了混沌的两个关键特征–拉伸和折叠 stretching and folding :因子 ,<math>2^{n}</math> 显示拉伸的指数增长,这导致对初始条件的敏感依赖(即蝴蝶效应),而正弦平方函数将 ,<math>x_{n}</math> 折叠在[0,1]范围内。
     
330

个编辑

导航菜单