更改

跳到导航 跳到搜索
删除1字节 、 2020年4月29日 (三) 23:44
第214行: 第214行:  
对于<math>\mu =4</math>的Logistic映射,此时对应r= 2的帐篷映射。(最小)长度k = 1,2,3,…的循环数是一个已知的整数序列(OEIS中的序列A001037):2,1 ,2、3、6、9、18、30、56、99、186、335、630、1161…这告诉我们,<math>\mu =4</math>的Logistic映射具有2个固定点,长度为2时的周期为1,长度为3时的周期为2,依此类推。对于素数k有序列:<math>2\frac{2^{k-1}-1}{k}</math>
 
对于<math>\mu =4</math>的Logistic映射,此时对应r= 2的帐篷映射。(最小)长度k = 1,2,3,…的循环数是一个已知的整数序列(OEIS中的序列A001037):2,1 ,2、3、6、9、18、30、56、99、186、335、630、1161…这告诉我们,<math>\mu =4</math>的Logistic映射具有2个固定点,长度为2时的周期为1,长度为3时的周期为2,依此类推。对于素数k有序列:<math>2\frac{2^{k-1}-1}{k}</math>
 
例如:<math>2\frac{2^{13-1}-1}{13}</math>是长度为13的循环数。在所有初始条件下,映射都是混乱的,所以这些有限长度的循环都是不稳定的。
 
例如:<math>2\frac{2^{13-1}-1}{13}</math>是长度为13的循环数。在所有初始条件下,映射都是混乱的,所以这些有限长度的循环都是不稳定的。
      
==不同参数<math>\mu</math>下的极限行为==
 
==不同参数<math>\mu</math>下的极限行为==
7,129

个编辑

导航菜单