更改

跳到导航 跳到搜索
大小无更改 、 2020年4月30日 (四) 12:50
无编辑摘要
第3行: 第3行:  
|description=Logistic映射,Logistic函模型
 
|description=Logistic映射,Logistic函模型
 
}}
 
}}
[[File:logistic .png|400px|thumb|right|以美国人口为例,使用Logistic模型来拟合1900年后的人口数据:<math>x(t)=\frac{K}{1+(\frac{K}{x_0}-1)e^{-rt}}</math>,其中<math>K</math>为最大容纳量]]
+
[[File:logistic .png|400px|thumb|right|以美国人口为例,使用Logistic模型来拟合1800年后的人口数据:<math>x(t)=\frac{K}{1+(\frac{K}{x_0}-1)e^{-rt}}</math>,其中<math>K</math>为最大容纳量]]
 
'''Logistic映射''',又称单峰映象,是一个二次多项式映射(递归关系),经常作为典型范例来说明复杂的混沌现象是如何从非常简单的非线性动力学方程中产生的。生物学家[[罗伯特·梅 Robert May]] <ref name="May, Robert M 1976">{{cite journal |last=May |first=Robert M. |year=1976 |title=Simple mathematical models with very complicated dynamics |journal=Nature (journal) |volume=261 |issue=5560 |pages=459–467 |doi=10.1038/261459a0 |bibcode=1976Natur.261..459M |pmid=934280 |hdl=10338.dmlcz/104555 |hdl-access=free }}</ref>在1976年的一篇论文中推广了这一映射,<ref>"{{MathWorld | urlname=LogisticEquation | title= Logistic Equation}}</ref>它在一定程度上是一个时间离散的人口统计模型,类似于'''皮埃尔·弗朗索瓦·韦胡斯特  Pierre Francois Verhulst''' 首次提出的逻辑方程。
 
'''Logistic映射''',又称单峰映象,是一个二次多项式映射(递归关系),经常作为典型范例来说明复杂的混沌现象是如何从非常简单的非线性动力学方程中产生的。生物学家[[罗伯特·梅 Robert May]] <ref name="May, Robert M 1976">{{cite journal |last=May |first=Robert M. |year=1976 |title=Simple mathematical models with very complicated dynamics |journal=Nature (journal) |volume=261 |issue=5560 |pages=459–467 |doi=10.1038/261459a0 |bibcode=1976Natur.261..459M |pmid=934280 |hdl=10338.dmlcz/104555 |hdl-access=free }}</ref>在1976年的一篇论文中推广了这一映射,<ref>"{{MathWorld | urlname=LogisticEquation | title= Logistic Equation}}</ref>它在一定程度上是一个时间离散的人口统计模型,类似于'''皮埃尔·弗朗索瓦·韦胡斯特  Pierre Francois Verhulst''' 首次提出的逻辑方程。
  
1,526

个编辑

导航菜单