| Let {{math|G {{=}} (V, E)}} and {{math|G′ {{=}} (V′, E′)}} be two graphs. Graph {{math|G′}} is a ''sub-graph'' of graph {{math|G}} (written as {{math|G′ ⊆ G}}) if {{math|V′ ⊆ V}} and {{math|E′ ⊆ E ∩ (V′ × V′)}}. If {{math|G′ ⊆ G}} and {{math|G′}} contains all of the edges {{math|⟨u, v⟩ ∈ E}} with {{math|u, v ∈ V′}}, then {{math|G′}} is an ''induced sub-graph'' of {{math|G}}. We call {{math|G′}} and {{math|G}} isomorphic (written as {{math|G′ ↔ G}}), if there exists a bijection (one-to-one) {{math|f:V′ → V}} with {{math|⟨u, v⟩ ∈ E′ ⇔ ⟨f(u), f(v)⟩ ∈ E}} for all {{math|u, v ∈ V′}}. The mapping {{math|f}} is called an isomorphism between {{math|G}} and {{math|G′}}.<ref name="die1">{{cite journal |author=Diestel R |title=Graph Theory (Graduate Texts in Mathematics) |volume=173 |year=2005|publisher=New York: Springer-Verlag Heidelberg}}</ref> | | Let {{math|G {{=}} (V, E)}} and {{math|G′ {{=}} (V′, E′)}} be two graphs. Graph {{math|G′}} is a ''sub-graph'' of graph {{math|G}} (written as {{math|G′ ⊆ G}}) if {{math|V′ ⊆ V}} and {{math|E′ ⊆ E ∩ (V′ × V′)}}. If {{math|G′ ⊆ G}} and {{math|G′}} contains all of the edges {{math|⟨u, v⟩ ∈ E}} with {{math|u, v ∈ V′}}, then {{math|G′}} is an ''induced sub-graph'' of {{math|G}}. We call {{math|G′}} and {{math|G}} isomorphic (written as {{math|G′ ↔ G}}), if there exists a bijection (one-to-one) {{math|f:V′ → V}} with {{math|⟨u, v⟩ ∈ E′ ⇔ ⟨f(u), f(v)⟩ ∈ E}} for all {{math|u, v ∈ V′}}. The mapping {{math|f}} is called an isomorphism between {{math|G}} and {{math|G′}}.<ref name="die1">{{cite journal |author=Diestel R |title=Graph Theory (Graduate Texts in Mathematics) |volume=173 |year=2005|publisher=New York: Springer-Verlag Heidelberg}}</ref> |
− | 设{{math|G {{=}} (V, E)}} 和 {{math|G′ {{=}} (V′, E′)}} 是两个图。若{{math|V′ ⊆ V}}且满足{{math|E′ ⊆ E ∩ (V′ × V′)}})(即图{{math|G′ ⊆ G}的所有边和点都属于图{{math|G}})则称图{{math|G′ ⊆ G}是图{{math|G}}的一个子图 | + | 设{{math|G {{=}} (V, E)}} 和 {{math|G′ {{=}} (V′, E′)}} 是两个图。若{{math|V′ ⊆ V}}且满足{{math|E′ ⊆ E ∩ (V′ × V′)}})(即图{{math|G′ ⊆ G}的所有边和点都属于图{{math|G}})则称图{{math|G′ ⊆ G}是图{{math|G}}的一个子图<ref name="die1">{{cite journal |author=Diestel R |title=Graph Theory (Graduate Texts in Mathematics) |volume=173 |year=2005|publisher=New York: Springer-Verlag Heidelberg}}</ref> |
| 若{{math|G′ ⊆ G}},且对于顶点{{math|u}}、{{math|v}}及其连边,只要{{math|u}}和{{math|v}}存在于{{math|G′}}(即若{{math|U}}, {{math|V′ ⊆ V}}),那么{{math|G′ ⊆ G}}中就应该包含原图{{math|G}}中的所有{{math|u}}和{{math|V}}的对应连边(即{{math|⟨u, v⟩ ∈ E}}),则称此时图{{math|G′}}就是图{{math|G}}的导出子图。 | | 若{{math|G′ ⊆ G}},且对于顶点{{math|u}}、{{math|v}}及其连边,只要{{math|u}}和{{math|v}}存在于{{math|G′}}(即若{{math|U}}, {{math|V′ ⊆ V}}),那么{{math|G′ ⊆ G}}中就应该包含原图{{math|G}}中的所有{{math|u}}和{{math|V}}的对应连边(即{{math|⟨u, v⟩ ∈ E}}),则称此时图{{math|G′}}就是图{{math|G}}的导出子图。 |