更改

跳到导航 跳到搜索
添加585字节 、 2020年5月6日 (三) 19:33
第61行: 第61行:  
where index {{math|i}} is defined over the set of all non-isomorphic n-size graphs. Another statistical measurement is defined for evaluating network motifs, but it is rarely used in known algorithms. This measurement is introduced by Picard ''et al.'' in 2008 and used the Poisson distribution, rather than the Gaussian normal distribution that is implicitly being used above.<ref name="pic1">{{cite journal |vauthors=Picard F, Daudin JJ, Schbath S, Robin S |title=Assessing the Exceptionality of Network Motifs |journal=J. Comp. Bio. |year=2005 |volume=15 |issue=1 |pages=1–20|doi=10.1089/cmb.2007.0137 |pmid=18257674 |citeseerx=10.1.1.475.4300 }}</ref>
 
where index {{math|i}} is defined over the set of all non-isomorphic n-size graphs. Another statistical measurement is defined for evaluating network motifs, but it is rarely used in known algorithms. This measurement is introduced by Picard ''et al.'' in 2008 and used the Poisson distribution, rather than the Gaussian normal distribution that is implicitly being used above.<ref name="pic1">{{cite journal |vauthors=Picard F, Daudin JJ, Schbath S, Robin S |title=Assessing the Exceptionality of Network Motifs |journal=J. Comp. Bio. |year=2005 |volume=15 |issue=1 |pages=1–20|doi=10.1089/cmb.2007.0137 |pmid=18257674 |citeseerx=10.1.1.475.4300 }}</ref>
   −
其中{{math|N}}表示随机网络的数目,{{math|i}}定义在随机网络的集合上,若条件{{math|c(i)}}成立,则Kroneckerδ函数{{math|δ(c(i))}}是1。在网络{{math|G}}中,一个特定的n维子图{{math|N&prime;}}的集中度是指子图在网络中出现频率与n维非同构子图的总频率之比,其计算公式如下:
+
其中索引 i 定义在所有非同构 n 大小图的集合上。 另一种统计测量是用来评估网络主题的,但在已知的算法中很少使用。 这种测量方法是由 Picard 等人在2008年提出的,使用的是泊松分佈分布,而不是上面隐含使用的高斯正态分布。<ref name="pic1">{{cite journal |vauthors=Picard F, Daudin JJ, Schbath S, Robin S |title=Assessing the Exceptionality of Network Motifs |journal=J. Comp. Bio. |year=2005 |volume=15 |issue=1 |pages=1–20|doi=10.1089/cmb.2007.0137 |pmid=18257674 |citeseerx=10.1.1.475.4300 }}</ref>其中{{math|N}}表示随机网络的数目,{{math|i}}定义在随机网络的集合上,若条件{{math|c(i)}}成立,则Kroneckerδ函数{{math|δ(c(i))}}是1。在网络{{math|G}}中,一个特定的n维子图{{math|N&prime;}}的集中度是指子图在网络中出现频率与n维非同构子图的总频率之比,其计算公式如下:
    
<math>C_G(G^\prime) = \frac{F_G(G^\prime)}{\sum_i F_G(G_i)}</math>
 
<math>C_G(G^\prime) = \frac{F_G(G^\prime)}{\sum_i F_G(G_i)}</math>
377

个编辑

导航菜单