更改

跳到导航 跳到搜索
添加2,230字节 、 2020年5月7日 (四) 00:31
无编辑摘要
第72行: 第72行:     
{|class="wikitable"
 
{|class="wikitable"
|+ mfinder
+
|+ Mavisto
 
|-
 
|-
!rowspan="1"|Definitions: Esis the set of picked edges. Vs is the set of all nodes that are touched by the edges in E.
+
!rowspan="1"|Data: Graph G, target pattern size t, frequency concept F.<br>
 +
Result: Set R of patterns of size t with maximum frequency.<br>
 
|-
 
|-
|rowspan="5"|Init Vs and Es to be empty sets.<br>
+
|rowspan="20"|R ← φ, fmax ← 0<br>
1. Pick a random edge e1 = (vi, vj). Update Es = {e1}, Vs = {vi, vj} <br>
+
P ←start pattern p1 of size 1<br>
2. Make a list L of all neighbor edges of Es. Omit from L all edges between members of Vs. <br>
+
Mp1 ←all matches of p1 in G<br>
3. Pick a random edge e = {vk,vl} from L. Update Es = Es ⋃ {e}, Vs = Vs ⋃ {vk, vl}. <br>
+
While P ≠ φ do<br>
4. Repeat steps 2-3 until completing an n-node subgraph (until |Vs| = n). <br>
+
&nbsp;&nbsp;&nbsp;&nbsp;Pmax ←select all patterns from P with maximum size.<br>
5. Calculate the probability to sample the picked n-node subgraph. <br>
+
&nbsp;&nbsp;&nbsp;&nbsp;P ← select pattern with maximum frequency from Pmax<br>
 +
&nbsp;&nbsp;&nbsp;&nbsp;Ε = ExtensionLoop(G, p, Mp)<br>
 +
&nbsp;&nbsp;&nbsp;&nbsp;Foreach pattern p ∈ E<br>
 +
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;If F = F1 then f ← size(Mp)<br>
 +
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Else f ← Maximum Independent set(F, Mp)<br>
 +
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;End<br>
 +
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;If size(p) = t then<br>
 +
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;If f = fmax then R ← R ⋃ {p}<br>
 +
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Else if f > fmax then R ← {p}; fmax ← f<br>
 +
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;End<br>
 +
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Else<br>
 +
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;If F = F1 or f ≥ fmax then P ← P ⋃ {p}<br>
 +
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;End<br>
 +
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;End<br>
 +
&nbsp;&nbsp;&nbsp;&nbsp;End<br>
 +
End<br>
 
|}
 
|}
       
{|class="wikitable"
 
{|class="wikitable"
|+ mfinder
+
|+ Mavisto
 
|-
 
|-
!rowspan="1"|定义:<math>E_{s}</math>是采集的边集合。<math>V_{s}</math><math>E</math>中所有边的顶点的集合。
+
!rowspan="1"|数据: 图 <math>G</math>, 目标模式规模 <math>t</math>, 频率概念 <math>F</math>。<br>
 +
结果: 以最大频率设置大小为 <math>t</math>的模式 <math>R</math>.<br>
 
|-
 
|-
|rowspan="5"|初始化<math>V_{s}</math><math>E_{s}</math>为空集。<br>
+
|rowspan="20"| <math>R \leftarrow \Phi , f_{max}\leftarrow 0</math><br>
1. 随机选择一条边<math> e_{1} = (v_{i}, v_{j}) </math>,更新 <math>E_{s} = \{e_{1}\}, V{s} = \{v_{i}, v_{j}\}</math><br>
+
<math>P \leftarrow</math> 开始于大小为1的模式 <math>p_{1}</math><br>
2. 列出<math>E{s}</math>的所有邻边列表<math> L </math>,从<math> L </math>中删除<math>V{s}</math>中所有元素组成的边。<br>
+
<math>M_{p_{1}} \leftarrow </math> 图 <math>G</math> 中模式 <math>p_{1}</math> 的所有匹配<br>
3. 从<math> L </math>中随机选择一条边<math> e = \{v_{k},v_{l}\} </math>, 更新<math>E_{s} = E_{s} \cup  \{e\} , V_{s} = V_{s} \cup \{v_{k}, v_{l}\}</math><br>
+
当 <math>P \neq \Phi </math> 时,执行:<br>
4. 重复步骤2-3,直到完成包含n个节点的子图 (<math>\left | V_{s} \right | = n</math>)。<br>
+
&nbsp;&nbsp;&nbsp;&nbsp;<math>P_{max} \leftarrow</math> 从 <math>P</math> 中选择最大规模的所有模式。<br>
5. 计算对选取的n节点子图进行采样的概率。<br>
+
&nbsp;&nbsp;&nbsp;&nbsp;<math>P\leftarrow</math> 从 <math>P_{max}</math> 中选择最大频率的模式<br>
 +
&nbsp;&nbsp;&nbsp;&nbsp;<math>E = ExtensionLoop(G, p, M_{p})</math><br>
 +
&nbsp;&nbsp;&nbsp;&nbsp;对于 <math>p \in E </math> 的所有模式:<br>
 +
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;如果 <math>F = F_{1}</math> ,那么 <math>f \leftarrow size(M_{p})</math><br>
 +
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;其他<math>f \leftarrow</math> 最大独立集 <math>(F, M_{p})</math><br>
 +
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;结束<br>
 +
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;如果 <math>size(p) = t</math> ,那么<br>
 +
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;如果 <math>f = f_{max}</math> ,那么 <math>R \leftarrow R \cup \{p\}</math><br>
 +
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;其他 如果 <math>f > f_{max}</math> ,那么 <math>R \leftarrow \{p\}</math>; <math>f_{max} \leftarrow f</math><br>
 +
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;结束<br>
 +
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;其他<br>
 +
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;如果 <math>F = F_{1} or f \geq f_{max}</math> ,那么 <math> P \leftarrow P \cup \{p\}</math><br>
 +
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;结束<br>
 +
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;结束<br>
 +
&nbsp;&nbsp;&nbsp;&nbsp;结束<br>
 +
结束<br>
 
|}
 
|}
  
106

个编辑

导航菜单