似然分析的更一般的框架是:给定一个网络系统,特定网络哈密顿量的负指数被统计分配函数归一化后,就得到这个网络出现的似然,一条未被观察到的连边存在的可能性就等于添加这条连边后网络的似然值。闭路模型考虑网络结构形成中的“局部性原则”,并由此定义了网络的哈密顿量。实验表明,闭路模型的预测精度大于层次结构模型和随机分块模型。 | 似然分析的更一般的框架是:给定一个网络系统,特定网络哈密顿量的负指数被统计分配函数归一化后,就得到这个网络出现的似然,一条未被观察到的连边存在的可能性就等于添加这条连边后网络的似然值。闭路模型考虑网络结构形成中的“局部性原则”,并由此定义了网络的哈密顿量。实验表明,闭路模型的预测精度大于层次结构模型和随机分块模型。 |