更改

跳到导航 跳到搜索
删除2字节 、 2020年5月13日 (三) 22:35
第191行: 第191行:     
:<math>x_v = \frac {1}{ \lambda} \sum_{t \in M(v)} x_t = \frac {1}{ \lambda} \sum_{t \in G} a_{v,t} x_t </math>
 
:<math>x_v = \frac {1}{ \lambda} \sum_{t \in M(v)} x_t = \frac {1}{ \lambda} \sum_{t \in G} a_{v,t} x_t </math>
      
其中:<math>M(v)</math>是节点:<math>v</math>的相邻节点集合,:<math>\lambda</math>是一个常数。经过一系列变形,该公式可变换为如下所示的[[特征向量]]方程:
 
其中:<math>M(v)</math>是节点:<math>v</math>的相邻节点集合,:<math>\lambda</math>是一个常数。经过一系列变形,该公式可变换为如下所示的[[特征向量]]方程:
第197行: 第196行:     
:<math>\mathbf{Ax} = \lambda \mathbf{x}</math>
 
:<math>\mathbf{Ax} = \lambda \mathbf{x}</math>
      
通常来说,有许多不同的特征值:<math>\lambda</math>能使得一个特征方程有非零解存在。然而,考虑到特征向量中的所有项均为非负值,根据[[佩伦-弗罗贝尼乌斯定理]],只有特征值最大时才能测量出想要的中心性。然后通过计算网络中的节点:<math>v</math> 其特征向量的相关分量:<math>v^\text{th}</math>便能得出其对应的中心性的分数。特征向量的定义只有一个公因子,因此各节点中心性的比例可以很好确定。为了确定一个绝对分数,必须将其中一个特征值标准化,例如所有节点评分之和为1或者节点数&nbsp;''n''。[[冪次迭代|幂次迭代]]是许多特征值算法中的一种,该算法可以用来寻找这种主导特征向量。此外,以上方法可以推广,使得矩阵''A''中每个元素可以是表示连接强度的实数,例如[[随机矩阵]]。
 
通常来说,有许多不同的特征值:<math>\lambda</math>能使得一个特征方程有非零解存在。然而,考虑到特征向量中的所有项均为非负值,根据[[佩伦-弗罗贝尼乌斯定理]],只有特征值最大时才能测量出想要的中心性。然后通过计算网络中的节点:<math>v</math> 其特征向量的相关分量:<math>v^\text{th}</math>便能得出其对应的中心性的分数。特征向量的定义只有一个公因子,因此各节点中心性的比例可以很好确定。为了确定一个绝对分数,必须将其中一个特征值标准化,例如所有节点评分之和为1或者节点数&nbsp;''n''。[[冪次迭代|幂次迭代]]是许多特征值算法中的一种,该算法可以用来寻找这种主导特征向量。此外,以上方法可以推广,使得矩阵''A''中每个元素可以是表示连接强度的实数,例如[[随机矩阵]]。
863

个编辑

导航菜单