更改

跳到导航 跳到搜索
第141行: 第141行:     
== 主要研究领域 ==
 
== 主要研究领域 ==
   
=== 组合博弈论 ===
 
=== 组合博弈论 ===
+
Conway因其对组合博弈论 combinatorial games theory(CGT)的贡献而广为人知,这是一种党派博弈理论。他与 Elwyn Berlekamp 和 Richard Guy 共同发展了这一理论,并与他们合著了《数学游戏的制胜之道(Winning Ways for your Mathematical Plays)》一书。他还写了CGT 的数学奠基之作——《关于数字和游戏 On Numbers and Games》(ONAG)。
康威因其对组合博弈论 combinatorial games theory(CGT)的贡献而广为人知,这是一种党派博弈理论。他与 Elwyn Berlekamp 和 Richard Guy 共同发展了这一理论,并与他们合著了《数学游戏的制胜之道(Winning Ways for your Mathematical Plays)》一书。他还写了CGT 的数学奠基之作——《关于数字和游戏(On Numbers and Games)》(ONAG)。
+
 
    
他还是豆芽游戏 sprouts 和哲球棋 Phutball 的发明者之一。他给出了索马立方 Soma Cube 、孔明棋 Peg Solitaire 、康威的士兵 Conway's Soldiers 等许多其他游戏和谜题的详细分析。他提出了天使问题 Angel Problem ,该问题在2006年已获解答。
 
他还是豆芽游戏 sprouts 和哲球棋 Phutball 的发明者之一。他给出了索马立方 Soma Cube 、孔明棋 Peg Solitaire 、康威的士兵 Conway's Soldiers 等许多其他游戏和谜题的详细分析。他提出了天使问题 Angel Problem ,该问题在2006年已获解答。
   −
他创立了一种新的数字系统——超现实数 surreal numbers ,这些数字与某些游戏密切相关,并成为唐纳德·克努斯(Donald Knuth)的数学中篇小说的主题。他还为大数发明了一种表示方法——康威链式箭号表示法 Conway chained arrow notation ,这个方法可以表示连高德纳箭号表示法都难以表示的数。
+
 
 +
他创立了一种新的数字系统——超现实数 surreal numbers ,这些数字与某些游戏密切相关,并成为唐纳德·克努斯 Donald Knuth的数学中篇小说的主题。他还为大数发明了一种表示方法——康威链式箭号表示法 Conway chained arrow notation ,这个方法可以表示连高德纳箭号表示法都难以表示的数。
 +
 
    
=== 几何学 ===
 
=== 几何学 ===
 +
在20世纪60年代中期,Conway与迈克尔·盖伊 Michael Guy建立了64个[https://en.wikipedia.org/wiki/Uniform_polychoron 凸均匀多面体(convex uniform polychora)],其中不包括两个棱形无穷集。 他们在这个过程中发现了巨大的[https://en.wikipedia.org/wiki/Grand_antiprism 反棱镜],这是唯一的非维索菲安式均匀多面体([https://en.wikipedia.org/wiki/Non-Wythoffian non-Wythoffian uniform polychoron] )。此外,Conway创立了一个用于描述多面体的符号系统,称为康威多面体表示法 Conway polyhedron notation。
 +
   −
在20世纪60年代中期,康威与迈克尔·盖伊(Michael Guy)建立了64个[https://en.wikipedia.org/wiki/Uniform_polychoron 凸均匀多面体(convex uniform polychora)],其中不包括两个棱形无穷集。 他们在这个过程中发现了巨大的[https://en.wikipedia.org/wiki/Grand_antiprism 反棱镜],这是唯一的非维索菲安式均匀多面体([https://en.wikipedia.org/wiki/Non-Wythoffian non-Wythoffian uniform polychoron] )。此外,康威创立了一个用于描述多面体的符号系统,称为康威多面体表示法 Conway polyhedron notation。
+
Conway提出了一种密铺数学理论——康威准则 Conway criterion,描述多边形可用来做平面镶嵌的条件<ref name=rhoads>{{cite journal| doi=10.1016/j.cam.2004.05.002 | volume=174 | issue=2 | title=Planar tilings by polyominoes, polyhexes, and polyiamonds | year=2005 | journal=Journal of Computational and Applied Mathematics | pages=329–353 | last1 = Rhoads | first1 = Glenn C.| bibcode=2005JCoAM.174..329R }}</ref>。
   −
康威提出了一种密铺数学理论——康威准则 Conway criterion,描述多边形可用来做平面镶嵌的条件<ref name=rhoads>{{cite journal| doi=10.1016/j.cam.2004.05.002 | volume=174 | issue=2 | title=Planar tilings by polyominoes, polyhexes, and polyiamonds | year=2005 | journal=Journal of Computational and Applied Mathematics | pages=329–353 | last1 = Rhoads | first1 = Glenn C.| bibcode=2005JCoAM.174..329R }}</ref>。
      
他研究了更高维度的晶格,并首次确定了利奇格(Leech lattice,24维欧几里得空间的一种双幺模晶格)的对称群。
 
他研究了更高维度的晶格,并首次确定了利奇格(Leech lattice,24维欧几里得空间的一种双幺模晶格)的对称群。
 +
    
=== 几何拓扑学 ===
 
=== 几何拓扑学 ===
 +
在纽结理论中,Conway对亚历山大多项式 Alexander polynomial 的一个版本进行公式化,并产生了一个新的不变量——康威多项式 Conway polynomial <ref>Livingston, Charles, Knot Theory (MAA Textbooks), 1993, {{ISBN|0883850273}}</ref>。在沉寂了十多年之后,这个概念在20世纪80年代成为新纽结多项式 knot polynomials 的核心。康威进一步发展了缠结理论 tangle theory ,并发明了一种描述纽结的符号系统——康威符号 Conway notation。
   −
在纽结理论中,康威对亚历山大多项式 Alexander polynomial 的一个版本进行公式化,并产生了一个新的不变量——康威多项式 Conway polynomial <ref>Livingston, Charles, Knot Theory (MAA Textbooks), 1993, {{ISBN|0883850273}}</ref>。在沉寂了十多年之后,这个概念在20世纪80年代成为新纽结多项式 knot polynomials 的核心。康威进一步发展了缠结理论 tangle theory ,并发明了一种描述纽结的符号系统——康威符号 Conway notation。
      
=== 群论 ===
 
=== 群论 ===
 
[[File:怪物群.jpeg|200px|缩略图|右|怪物群]]
 
[[File:怪物群.jpeg|200px|缩略图|右|怪物群]]
康威是《有限群的阿特拉斯(ATLAS of Finite Groups)》的第一作者(此书给出了许多有限简单群 finite simple groups 的性质)。他与同事罗伯特·柯蒂斯(Robert Curtis )和西蒙 · p·诺顿(Simon P. Norton)一起构建了一些散在群 sporadic groups 的第一个具体表述。具体来说,他根据利奇格(Leech lattice)的对称性发现了三个散在群,它们被命名为康威群 Conway groups 。这项工作使他成为有限单群分类的关键人物。
+
Conway是《有限群的阿特拉斯 ATLAS of Finite Groups》的第一作者(此书给出了许多有限简单群 finite simple groups 的性质)。他与同事罗伯特·柯蒂斯 Robert Curtis 和西蒙 · p·诺顿Simon P. Norton一起构建了一些散在群 sporadic groups 的第一个具体表述。具体来说,他根据利奇格 Leech lattice的对称性发现了三个散在群,它们被命名为康威群 Conway groups 。这项工作使他成为有限单群分类的关键人物。
   −
1979年,康威和西蒙·诺顿(Simon P. Norton)提出怪兽月光理论 monstrous moonshine,表达了怪兽群 monster group 和模函数 modular functions 间的惊人关系,这一理论沟通了原本分立的有限群理论和复函数理论。怪兽月光理论现已经被发现与弦理论有着深刻的联系。
     −
康威引入了Mathieu groupoid,它是由马蒂厄群M<sub>12</sub>(Mathieu group M<sub>12</sub>)扩展到13点而来。
+
1979年,Conway和西蒙·诺顿 Simon P. Norton提出怪兽月光理论 monstrous moonshine,表达了怪兽群 monster group 和模函数 modular functions 间的惊人关系,这一理论沟通了原本分立的有限群理论和复函数理论。怪兽月光理论现已经被发现与弦理论有着深刻的联系。
 +
 
 +
 
 +
Conway引入了 Mathieu groupoid,它是由马蒂厄群<math>M_12</math>(Mathieu group<math>M_12</math>)扩展到13点而来。
 +
 
 +
 
 +
注:“怪物群”是1980年由数学家罗柏·克里斯(R. Grìess)发现的,Conway将这个群称为“怪物”:没有人能否认“怪物”是一个很引人的抽象结构。想像这是一个在196883维空间里的钻石,它有1054个转轴和旋转中心,而仍能显示其匀称和均致。
   −
注:“怪物群”是1980年由数学家罗柏·克里斯(R. Grìess)发现的,康威将这个群称为“怪物”:没有人能否认“怪物”是一个很引人的抽象结构。想像这是一个在196883维空间里的钻石,它有1054个转轴和旋转中心,而仍能显示其匀称和均致。
      
=== 数论 ===
 
=== 数论 ===
 
1770年,华林发表了《代数沉思录》(Meditationes Algebraicae),其中说,每一个正整数至多是9个立方数之和;至多是19个四次方之和。还猜想,每一个正整数都是可以表示成为至多r个k次幂之和,其中r依赖于k。
 
1770年,华林发表了《代数沉思录》(Meditationes Algebraicae),其中说,每一个正整数至多是9个立方数之和;至多是19个四次方之和。还猜想,每一个正整数都是可以表示成为至多r个k次幂之和,其中r依赖于k。
   −
康威在研究生时期证明了爱德华·华林(Edward Waring)的这个猜想,即每个整数都可以写成37个数字的的五次方之和。(尽管陈景润在康威的著作出版之前独立地解决了这个问题)<ref>[http://www.ems-ph.org/journals/newsletter/pdf/2005-09-57.pdf#page=34 Breakfast with John Horton Conway]</ref>
+
Conway在研究生时期证明了爱德华·华林 Edward Waring的这个猜想,即每个整数都可以写成37个数字的的五次方之和。(尽管陈景润在康威的著作出版之前独立地解决了这个问题)<ref>[http://www.ems-ph.org/journals/newsletter/pdf/2005-09-57.pdf#page=34 Breakfast with John Horton Conway]</ref>
 +
 
    
=== 代数 ===
 
=== 代数 ===
 
[[File:icosian game.png|200px|缩略图|右|哈曼顿回路:右边是一个正十二面体,每一个棱角处表示一个城市,本游戏的目的是实现哈曼顿环游;左边时哈曼顿回路的平面俯视图]]
 
[[File:icosian game.png|200px|缩略图|右|哈曼顿回路:右边是一个正十二面体,每一个棱角处表示一个城市,本游戏的目的是实现哈曼顿环游;左边时哈曼顿回路的平面俯视图]]
 
代数方面,康威写过教科书,尤其是做过四元数 quaternions 和八元数 octonions 方面的原创性工作。他和尼尔·斯隆(Neil Sloane)一起发明了[https://en.wikipedia.org/wiki/Icosian 曼哈顿回路 icosian]。1857年, 哈密尔顿发明了一个游戏(Icosian Game).它是由一个木制的正十二面体构成,在它的每个棱角处标有当时很有名的城市。游戏目的是“环球旅行”。在数学上,icosians 是哈密顿四元数的特殊集合,具有与600胞相同的对称性。  
 
代数方面,康威写过教科书,尤其是做过四元数 quaternions 和八元数 octonions 方面的原创性工作。他和尼尔·斯隆(Neil Sloane)一起发明了[https://en.wikipedia.org/wiki/Icosian 曼哈顿回路 icosian]。1857年, 哈密尔顿发明了一个游戏(Icosian Game).它是由一个木制的正十二面体构成,在它的每个棱角处标有当时很有名的城市。游戏目的是“环球旅行”。在数学上,icosians 是哈密顿四元数的特殊集合,具有与600胞相同的对称性。  
 +
 +
 
=== 分析 ===
 
=== 分析 ===
 +
Conway给出介值定理 intermediate value theorem 逆命题的一个反例——康威十三进制函数: 此函数满足强达布性质 Darboux property,但不是连续的。
   −
康威给出介值定理 intermediate value theorem 逆命题的一个反例——康威十三进制函数: 此函数满足强达布性质 Darboux property,但不是连续的。
      
=== 算法 ===
 
=== 算法 ===
 +
为了计算出某天是星期几,康威发明了末日规则 Doomsday rule 。它提供了一个万年历表 perpetual calendar,因为公历以400年的周期运动。
   −
为了计算出某天是星期几,康威发明了末日规则 Doomsday rule 。它提供了一个万年历表 perpetual calendar,因为公历以400年的周期运动。
      
心算的末日算法是 John Conway 在1973年从 Lewis Carroll 的万年历表算法中得到灵感后设计的。 每年都有一个特定的日子,被称为世界末日,在这个日子上某些容易记住的日子会降临,例如,4 / 4,6 / 6,8 / 8,10 / 10,12 / 12,以及2月的最后一天,所有这些日子都发生在任何一年的一周的同一天。  
 
心算的末日算法是 John Conway 在1973年从 Lewis Carroll 的万年历表算法中得到灵感后设计的。 每年都有一个特定的日子,被称为世界末日,在这个日子上某些容易记住的日子会降临,例如,4 / 4,6 / 6,8 / 8,10 / 10,12 / 12,以及2月的最后一天,所有这些日子都发生在任何一年的一周的同一天。  
 +
    
应用末日算法涉及三个步骤: 确定本世纪的锚定日;从锚定日算起,计算该年的末日;从总是落在末日上的日期中选择最近的日期,例如,4 / 4和6 / 6,以及计算该日期与有关日期到达周日之间的天数(模数7)。
 
应用末日算法涉及三个步骤: 确定本世纪的锚定日;从锚定日算起,计算该年的末日;从总是落在末日上的日期中选择最近的日期,例如,4 / 4和6 / 6,以及计算该日期与有关日期到达周日之间的天数(模数7)。
   −
这个算法非常简单,任何一个有基本算术能力的人都可以心算得出答案。康威通常能在两秒钟内给出正确答案。
     −
康威每天打开计算机时,屏幕上会随机显示十个日期,比如1789年7月14日,2037年12月26日等等,康威则心算出这些日期分别是星期几,输入后才能进入电脑。他的最高纪录还不到20秒就算出了全部星期。
+
这个算法非常简单,任何一个有基本算术能力的人都可以心算得出答案。Conway通常能在两秒钟内给出正确答案。
 +
 
 +
 
 +
Conway每天打开计算机时,屏幕上会随机显示十个日期,比如1789年7月14日,2037年12月26日等等,Conway则心算出这些日期分别是星期几,输入后才能进入电脑。他的最高纪录还不到20秒就算出了全部星期。
 +
 
    
=== 理论物理学 ===
 
=== 理论物理学 ===
遇事不决,量子力学。这是很多人对量子力学的调侃,连爱因斯坦也说,他不相信上帝会掷骰子。
+
遇事不决,量子力学。这是很多人对量子力学的调侃,连爱因斯坦也说,他不相信上帝会掷骰子。爱因斯坦认为,量子力学背后还存在着某种“隐藏的变量”,这种所谓的“隐变量”是确定的。事后无数的实验证明了爱因斯坦是错的。而Conway用数学的方法证明了所谓自由意志定理,再次论证了“隐变量不存在”。自由意志定理指出:量子力学的测量结果无法通过实验之前的任何方法来确定。
   −
爱因斯坦认为,量子力学背后还存在着某种“隐藏的变量”,这种所谓的“隐变量”是确定的。事后无数的实验证明了爱因斯坦是错的。
     −
而康威用数学的方法证明了所谓自由意志定理,再次论证了“隐变量不存在”。自由意志定理指出:量子力学的测量结果无法通过实验之前的任何方法来确定。
+
用Conway的话来说:如果实验者有自由意志的话,那么基本粒子也是如此。
   −
用康威的话来说:如果实验者有自由意志的话,那么基本粒子也是如此。
     −
2004年,康威和另一位普林斯顿的数学家 Simon B. Kochen 证明了[[自由意志定理 free will theorem ]]<ref>John Conway, Simon Kochen 2006 [https://arxiv.org/abs/quant-ph/0604079 The Free Will Theorem],Quantum Physics</ref>,这是量子力学的无隐变量 no hidden variables 原理一个惊人版本。它指出,在某些条件下,如果实验者可以自由决定在特定实验中测量什么量,那么基本粒子必须能够自由选择其自旋,以使测量结果与物理定律一致。康威挑衅性的措辞是: “如果实验者有自由意志,那么基本粒子也有。
+
2004年,Conway和另一位普林斯顿的数学家 Simon B. Kochen 证明了[[自由意志定理 free will theorem ]]<ref>John Conway, Simon Kochen 2006 [https://arxiv.org/abs/quant-ph/0604079 The Free Will Theorem],Quantum Physics</ref>,这是量子力学的无隐变量 no hidden variables 原理一个惊人版本。它指出,在某些条件下,如果实验者可以自由决定在特定实验中测量什么量,那么基本粒子必须能够自由选择其自旋,以使测量结果与物理定律一致。康威挑衅性的措辞是: “如果实验者有自由意志,那么基本粒子也有。
 
即:如果人类拥有自由意志,则基本粒子也有。康韦等对自由意志的定义,主要指两层含义:
 
即:如果人类拥有自由意志,则基本粒子也有。康韦等对自由意志的定义,主要指两层含义:
   −
(1)能在不同的可能性之中做出选择;
+
#能在不同的可能性之中做出选择;
 +
 
 +
#该选择不能由过去发生过的一切历史所决定。
   −
(2)该选择不能由过去发生过的一切历史所决定。
      
也就是:即使掌握了整个宇宙过去所有的一切信息,也无法对该选择作出准确预测。
 
也就是:即使掌握了整个宇宙过去所有的一切信息,也无法对该选择作出准确预测。
   −
2009年,康威发表了一个强自由意志定理<ref>Conway, John H.; Simon Kochen (2009).[http://www.ams.org/notices/200902/rtx090200226p.pdf?q=will&sa=U&ei=k71jU8X7DoypyASw9YGoCA&ved=0CCAQFjAB&usg=AFQjCNE7L-k87yWE32ru0rDjkLOdg12LRQ "The strong free will theorem" (PDF)]. Notices of the AMS. 56 (2): 226–232.</ref>,2017年Kochen对一些细节作出一些改进<ref>Kochen S., (2017), [https://arxiv.org/abs/1710.00868 Born's Rule, EPR, and the Free Will Theorem]</ref>。
+
 
 +
2009年,Conway发表了一个强自由意志定理<ref>Conway, John H.; Simon Kochen (2009).[http://www.ams.org/notices/200902/rtx090200226p.pdf?q=will&sa=U&ei=k71jU8X7DoypyASw9YGoCA&ved=0CCAQFjAB&usg=AFQjCNE7L-k87yWE32ru0rDjkLOdg12LRQ "The strong free will theorem" (PDF)]. Notices of the AMS. 56 (2): 226–232.</ref>,2017年Kochen对一些细节作出一些改进<ref>Kochen S., (2017), [https://arxiv.org/abs/1710.00868 Born's Rule, EPR, and the Free Will Theorem]</ref>。
 +
 
    
由于该定理适用于与任何一个和公理一致的物理理论,因此该定理不可以用特殊的方式将信息放入到宇宙的过去进行研究。 该论点来自于Kochen-Specker定理,该定理表明,任何关于自旋的单独测量结果都不是独立于测量选择而固定的。 正如Cator和Landsman关于隐藏变量理论所指出的那样<ref>Cator, Eric; Klaas Landsman (2014). [https://link.springer.com/article/10.1007/s10701-014-9815-z "Constraints on determinism: Bell versus Conway–Kochen"]. Foundations of Physics. 44 (7): 781–791. arXiv:1402.1972. Bibcode:2014FoPh...44..781C. doi:10.1007/s10701-014-9815-z.</ref>:“隐藏变量(相关因果关系),一方面应包括与实验有关的所有本体信息, 但另一方面,应该让实验者可以自由选择他们倾向的任何设置。”
 
由于该定理适用于与任何一个和公理一致的物理理论,因此该定理不可以用特殊的方式将信息放入到宇宙的过去进行研究。 该论点来自于Kochen-Specker定理,该定理表明,任何关于自旋的单独测量结果都不是独立于测量选择而固定的。 正如Cator和Landsman关于隐藏变量理论所指出的那样<ref>Cator, Eric; Klaas Landsman (2014). [https://link.springer.com/article/10.1007/s10701-014-9815-z "Constraints on determinism: Bell versus Conway–Kochen"]. Foundations of Physics. 44 (7): 781–791. arXiv:1402.1972. Bibcode:2014FoPh...44..781C. doi:10.1007/s10701-014-9815-z.</ref>:“隐藏变量(相关因果关系),一方面应包括与实验有关的所有本体信息, 但另一方面,应该让实验者可以自由选择他们倾向的任何设置。”
763

个编辑

导航菜单