更改

跳到导航 跳到搜索
删除5字节 、 2020年5月17日 (日) 18:24
第66行: 第66行:     
===数据挖掘与社交网络分析时期===
 
===数据挖掘与社交网络分析时期===
和其他社会系统计算模型的发展轨迹不同,社交网络分析(Social Network Analysis)诞生自20世纪七十到八十年代,是图论、统计学和社会结构研究等科研进展所催生出来的分析方法,被许多社会学家,如 James Samuel Coleman, Harrison White, Linton Freeman, J. Clyde Mitchell, Mark Granovetter, Ronald Burt, and Barry Wellman等采用。<ref>{{cite book|title=The Development of Social Network Analysis: A Study in the Sociology of Science |first=Linton C. |last=Freeman |publisher=Empirical Press |location=Vancouver, BC |year=2004}}</ref>  
+
和其他社会系统计算模型的发展轨迹不同,社交网络分析 Social Network Analysis诞生自20世纪七十到八十年代,是图论、统计学和社会结构研究等科研进展所催生出来的分析方法,被许多社会学家,如 James Samuel Coleman, Harrison White, Linton Freeman, J. Clyde Mitchell, Mark Granovetter, Ronald Burt, and Barry Wellman等采用。<ref>{{cite book|title=The Development of Social Network Analysis: A Study in the Sociology of Science |first=Linton C. |last=Freeman |publisher=Empirical Press |location=Vancouver, BC |year=2004}}</ref>  
 
八十到九十年代计算和通信技术的持续普及呼唤着[[网络科学]],多层次建模等可以适用于越来越复杂和大体量数据集的分析技术。最近的计算社会学浪潮并没有使用计算机模拟,而是使用了网络分析和高级统计技术对计算机数据库里的行为数据做分析。电子邮件、即时通信消息、万维网上的超链接、手机使用数据、新闻组内的讨论内容等电子记录让社会学家们得以在多时间点多个层面上直接观察和分析社会行为,避免了访谈、参与观察等传统实证方法(traditional empirical methods)的约束。<ref>{{cite journal|title=Life in the network: the coming age of computational social science|first9=J|last10=Gutmann|first10=M.|last11=Jebara|first11=T.|last12=King|first12=G.|last13=Macy|first13=M.|last14=Roy|first14=D.|last15=Van Alstyne|first15=M.|last9=Fowler|first8=N|last8=Contractor|first7=N|last7=Christakis|first6=D|last6=Brewer|first5=AL|last5=Barabasi|first4=S |journal=Science|last4=Aral |date=February 6, 2009|first3=L |volume=323|pmid=19197046 |issue=5915|last3=Adamic |pages=721–723|pmc=2745217 |doi=10.1126/science.1167742 |first1=David |last1=Lazer |first2=Alex |last2=Pentland |display-authors=8}}</ref>  
 
八十到九十年代计算和通信技术的持续普及呼唤着[[网络科学]],多层次建模等可以适用于越来越复杂和大体量数据集的分析技术。最近的计算社会学浪潮并没有使用计算机模拟,而是使用了网络分析和高级统计技术对计算机数据库里的行为数据做分析。电子邮件、即时通信消息、万维网上的超链接、手机使用数据、新闻组内的讨论内容等电子记录让社会学家们得以在多时间点多个层面上直接观察和分析社会行为,避免了访谈、参与观察等传统实证方法(traditional empirical methods)的约束。<ref>{{cite journal|title=Life in the network: the coming age of computational social science|first9=J|last10=Gutmann|first10=M.|last11=Jebara|first11=T.|last12=King|first12=G.|last13=Macy|first13=M.|last14=Roy|first14=D.|last15=Van Alstyne|first15=M.|last9=Fowler|first8=N|last8=Contractor|first7=N|last7=Christakis|first6=D|last6=Brewer|first5=AL|last5=Barabasi|first4=S |journal=Science|last4=Aral |date=February 6, 2009|first3=L |volume=323|pmid=19197046 |issue=5915|last3=Adamic |pages=721–723|pmc=2745217 |doi=10.1126/science.1167742 |first1=David |last1=Lazer |first2=Alex |last2=Pentland |display-authors=8}}</ref>  
 
[[机器学习]]算法的持续进步则更进一步允许社会学家和企业发现大规模数据集中隐藏的社会交互和演化的模式。
 
[[机器学习]]算法的持续进步则更进一步允许社会学家和企业发现大规模数据集中隐藏的社会交互和演化的模式。
863

个编辑

导航菜单