像爬山这样的简单的启发式方法,通过寻找更好的邻居来寻找更好的邻居,当他们达成一个没有更好的邻居的解决方案时就停止,不能保证会导致任何现有的更好的解决方案,他们的结果可能很容易地只是一个局部的最佳解决方案,而实际的最佳解决方案将是一个可能不。元启发法利用解的邻域作为探索解空间的方法,尽管它们更喜欢更好的邻域,但它们也接受更差的邻域以避免陷入局部最优; 如果运行足够长的时间,它们可以找到全局最优。 | 像爬山这样的简单的启发式方法,通过寻找更好的邻居来寻找更好的邻居,当他们达成一个没有更好的邻居的解决方案时就停止,不能保证会导致任何现有的更好的解决方案,他们的结果可能很容易地只是一个局部的最佳解决方案,而实际的最佳解决方案将是一个可能不。元启发法利用解的邻域作为探索解空间的方法,尽管它们更喜欢更好的邻域,但它们也接受更差的邻域以避免陷入局部最优; 如果运行足够长的时间,它们可以找到全局最优。 |