更改

跳到导航 跳到搜索
添加314字节 、 2020年5月18日 (一) 00:57
第104行: 第104行:  
The density <math>D</math> of a network, where there is no intersection between edges, is defined as a ratio of the number of edges <math>E</math> to the number of possible edges in a network with <math>N</math> nodes, given by a graph with no intersecting edges <math>(E_{\max}=3N-6)</math>, giving <math>D = \frac{E-N+1}{2N-5}.</math>
 
The density <math>D</math> of a network, where there is no intersection between edges, is defined as a ratio of the number of edges <math>E</math> to the number of possible edges in a network with <math>N</math> nodes, given by a graph with no intersecting edges <math>(E_{\max}=3N-6)</math>, giving <math>D = \frac{E-N+1}{2N-5}.</math>
   −
=== 平面网络密度 Planar Network Density  ===
+
=== 平面网络密度 ===
 +
The density <math>D</math> of a network, where there is no intersection between edges, is defined as a ratio of the number of edges <math>E</math> to the number of possible edges in a network with <math>N</math> nodes, given by a graph with no intersecting edges <math>(E_{\max}=3N-6)</math>, giving <math>D = \frac{E-N+1}{2N-5}.</math>
 +
 
 
一个网络的密度<math>D</math> 被定义为连边数量 <math>E</math>和节点数量<math>N</math>的比值,
 
一个网络的密度<math>D</math> 被定义为连边数量 <math>E</math>和节点数量<math>N</math>的比值,
  
198

个编辑

导航菜单