更改

跳到导航 跳到搜索
添加1,834字节 、 2020年5月18日 (一) 16:11
第308行: 第308行:     
=== Erdős–Rényi 随机图模型 ===
 
=== Erdős–Rényi 随机图模型 ===
 +
[[File:ER model.svg|thumb|This [[Erdős–Rényi model]] is generated with {{math|<VAR>N</VAR> {{=}} 4}} nodes. For each edge in the complete graph formed by all {{mvar|N}} nodes, a random number is generated and compared to a given probability. If the random number is less than {{mvar|p}}, an edge is formed on the model.]]
 +
The '''[[Erdős–Rényi model]]''', named for [[Paul Erdős]] and [[Alfréd Rényi]], is used for generating [[random graph]]s in which edges are set between nodes with equal probabilities. It can be used in the [[probabilistic method]] to prove the existence of graphs satisfying various properties, or to provide a rigorous definition of what it means for a property to hold for almost all graphs.
 +
 +
To generate an Erdős–Rényi model <math>G(n, p)
 +
 +
</math> two parameters must be specified: the total number of nodes {{mvar|n}} and the probability {{mvar|p}} that a random pair of nodes has an edge.
 +
 +
Because the model is generated without bias to particular nodes, the degree distribution is binomial: for a randomly chosen vertex <math>v</math>,
 +
: <math>P(\deg(v) = k) = {n-1\choose k} p^k (1-p)^{n-1-k}.</math>
 +
 +
In this model the clustering coefficient is {{math|0}} [[Almost surely|a.s]]. The behavior of <math>G(n, p)
 +
 +
</math>  can be broken into three regions.
 +
 +
''Subcritical'' <math>n p < 1
 +
 +
</math>: All components are simple and very small, the largest component has size <math>|C_1| = O(\log n)
 +
 +
</math>;
 +
 +
''Critical'' <math>n p = 1
 +
 +
</math>: <math>|C_1| = O(n^\frac{2}{3})
 +
 +
</math>;
 +
 +
''Supercritical'' <math>n p >1
 +
 +
</math>:<math>|C_1| \approx yn
 +
</math> where <math>y = y(n p)
 +
 +
</math> is the positive solution to the equation <math>e^{-p n y }=1-y
 +
 +
</math>.
 +
 +
The largest connected component has high complexity. All other components are simple and small <math>|C_2| = O(\log n)
 +
 +
</math>.
 +
    
以[[Paul Erdős]]和[[Alfréd Rényi]]命名的'''[[Erdős–Rényi 模型]]'''用于生成[[随机图]],它的边是等概率连接的节点的集合。[[随机图]]可以用来证明[[概率方法]]中满足某些条件的图的存在性,或者对几乎所有图给出某个性质的严格定义。
 
以[[Paul Erdős]]和[[Alfréd Rényi]]命名的'''[[Erdős–Rényi 模型]]'''用于生成[[随机图]],它的边是等概率连接的节点的集合。[[随机图]]可以用来证明[[概率方法]]中满足某些条件的图的存在性,或者对几乎所有图给出某个性质的严格定义。
198

个编辑

导航菜单