更改

跳到导航 跳到搜索
添加154字节 、 2020年5月19日 (二) 15:44
第51行: 第51行:     
=== 退火时间表 ===
 
=== 退火时间表 ===
 +
{{multiple image
 +
| align = right
 +
| total_width = 400
 +
| image_gap = 0
    +
| image1 = fast.jpg
 +
| alt1 = 快
 +
| caption1 = 快
    +
| image2 = slow.jpg
 +
| alt2 = 慢
 +
| caption2 = 慢
   −
举例说明冷却时间表对模拟退火性能的影响。问题是重新排列图像的像素,使某个势能函数最小化,这会使相似的颜色在短距离内相互吸引并在稍大的距离处相互排斥。基本移动方式是交换两个相邻像素。这些图像是通过快速冷却过程(左)和缓慢冷却过程(右)获得的,分别产生类似于非晶态和结晶态固体。
+
| footer=举例说明冷却时间表对模拟退火性能的影响。问题是重新排列图像的像素,使某个势能函数最小化,这会使相似的颜色在短距离内相互吸引并在稍大的距离处相互排斥。基本移动方式是交换两个相邻像素。这些图像是通过快速冷却过程(上)和缓慢冷却过程(下)获得的,分别产生类似于非晶态和结晶态固体。
 
+
}}
 
   
算法的名称和灵感需要在算法的运行特性中嵌入一个与温度变化有关的有趣特征,并随着模拟的进行逐渐降低温度。该算法首先将<math>T</math>设置为一个大值(或无穷大) ,然后按照某种退火时间表(可由用户指定,但必须在分配的时间预算结束时以<math>T=0</math>结束)逐步减少。通过这种方式,系统可以按照预期最初在包含良好解的广阔搜索空间游走,忽略能量函数的小特征; 然后向越来越窄的低能量区域漂移; 最后根据梯度下降法启发式向下移动。
 
算法的名称和灵感需要在算法的运行特性中嵌入一个与温度变化有关的有趣特征,并随着模拟的进行逐渐降低温度。该算法首先将<math>T</math>设置为一个大值(或无穷大) ,然后按照某种退火时间表(可由用户指定,但必须在分配的时间预算结束时以<math>T=0</math>结束)逐步减少。通过这种方式,系统可以按照预期最初在包含良好解的广阔搜索空间游走,忽略能量函数的小特征; 然后向越来越窄的低能量区域漂移; 最后根据梯度下降法启发式向下移动。
      −
对于任何给定的有限问题,随着退火时间表的扩展,模拟退火算法终止于全局最优解的概率接近1。<ref>{{cite journal |doi=10.1109/34.295910 |title=Simulated annealing: A proof of convergence |year=1994 |last1=Granville |first1=V. |last2=Krivanek |first2=M. |last3=Rasson |first3=J.-P. |journal=IEEE Transactions on Pattern Analysis and Machine Intelligence |volume=16 |issue=6 |pages=652–656}}</ref> 然而,因为确保取得大概率成功所需的时间通常超过完全搜索[[解空间]]所需的时间,所以这一理论结果并不是特别有用。{{Citation needed|date=June 2011}}
+
对于任何给定的有限问题,随着退火时间表的扩展,模拟退火算法终止于全局最优解的概率接近1。<ref>{{cite journal |doi=10.1109/34.295910 |title=Simulated annealing: A proof of convergence |year=1994 |last1=Granville |first1=V. |last2=Krivanek |first2=M. |last3=Rasson |first3=J.-P. |journal=IEEE Transactions on Pattern Analysis and Machine Intelligence |volume=16 |issue=6 |pages=652–656}}</ref> 然而,因为确保取得大概率成功所需的时间通常超过完全搜索[[解空间]]所需的时间,所以这一理论结果并不是特别有用。
    
==伪代码==
 
==伪代码==
763

个编辑

导航菜单