更改

跳到导航 跳到搜索
删除3字节 、 2020年5月22日 (五) 13:58
第114行: 第114行:  
齐普夫分布可以通过变量的变化从[[帕累托分布]]中得到。<ref>{{cite book|title=Univariate Discrete Distributions|edition=second|year=1992|author1=N. L. Johnson |author2=S. Kotz |author3=A. W. Kemp  |last-author-amp=yes |publisher=John Wiley & Sons, Inc.|location=New York|isbn=978-0-471-54897-3|ref=harv}}, p. 466.</ref> 有时也被称为离散帕累托分布,因为它类似于连续帕累托分布,就像离散型均匀分布类似于连续型均匀分布一样。
 
齐普夫分布可以通过变量的变化从[[帕累托分布]]中得到。<ref>{{cite book|title=Univariate Discrete Distributions|edition=second|year=1992|author1=N. L. Johnson |author2=S. Kotz |author3=A. W. Kemp  |last-author-amp=yes |publisher=John Wiley & Sons, Inc.|location=New York|isbn=978-0-471-54897-3|ref=harv}}, p. 466.</ref> 有时也被称为离散帕累托分布,因为它类似于连续帕累托分布,就像离散型均匀分布类似于连续型均匀分布一样。
   −
[[本福德定律]]是 齐普夫定律的一种特殊的有界情形,这两个定律之间的联系,<ref name="Galien">{{cite web |url=http://home.zonnet.nl/galien8/factor/factor.html |title=Factorial randomness: the Laws of Benford and Zipf with respect to the first digit distribution of the factor sequence from the natural numbers |author=Johan Gerard van der Galien |date=2003-11-08 |accessdate=8 July 2016 |archiveurl=https://web.archive.org/web/20070305150334/http://home.zonnet.nl/galien8/factor/factor.html |archivedate=2007-03-05}}</ref> <ref>Ali Eftekhari (2006) Fractal geometry of texts. ''Journal of Quantitative Linguistic'' 13(2-3): 177–193.</ref>就在于它们都起源于统计物理和临界现象的尺度不变函数关系(尺度不变特征)。在[[本福德定律]]中,概率的比率是不固定的。<ref name="Galien"/> <ref>L. Pietronero, E. Tosatti, V. Tosatti, A. Vespignani (2001) Explaining the uneven distribution of numbers in nature: The laws of Benford and Zipf. ''Physica A'' 293: 297–304.</ref>  满足齐普夫定律的前位数 <math>s = 1</math>同样也满足本福特定律。
+
 
 +
[[本福德定律]]是 齐普夫定律的一种特殊的有界情形,这两个定律之间的联系,<ref name="Galien">{{cite web |url=http://home.zonnet.nl/galien8/factor/factor.html |title=Factorial randomness: the Laws of Benford and Zipf with respect to the first digit distribution of the factor sequence from the natural numbers |author=Johan Gerard van der Galien |date=2003-11-08 |accessdate=8 July 2016 |archiveurl=https://web.archive.org/web/20070305150334/http://home.zonnet.nl/galien8/factor/factor.html |archivedate=2007-03-05}}</ref> <ref>Ali Eftekhari (2006) Fractal geometry of texts. ''Journal of Quantitative Linguistic'' 13(2-3): 177–193.</ref>就在于它们都起源于统计物理和临界现象的尺度不变函数关系(尺度不变特征)。在本福德定律中,概率的比率是不固定的。<ref name="Galien"/> <ref>L. Pietronero, E. Tosatti, V. Tosatti, A. Vespignani (2001) Explaining the uneven distribution of numbers in nature: The laws of Benford and Zipf. ''Physica A'' 293: 297–304.</ref>  满足齐普夫定律的前位数 <math>s = 1</math>同样也满足本福特定律。
 
{| class="wikitable" style="text-align: center; width:70%;margin:0 auto"
 
{| class="wikitable" style="text-align: center; width:70%;margin:0 auto"
 
|-
 
|-
7,129

个编辑

导航菜单