更改

跳到导航 跳到搜索
添加127字节 、 2020年5月22日 (五) 22:11
无编辑摘要
第26行: 第26行:  
感知机是生物[[神经细胞]]的简单抽象。神经细胞结构大致可分为:树突、突触、细胞体及轴突。单个神经细胞可被视为一种只有两种状态的机器——激动时为『是』,而未激动时为『否』。神经细胞的状态取决于从其它的神经细胞收到的输入信号量,及突触的强度(抑制或加强)。当信号量总和超过了某个阈值时,细胞体就会激动,产生电脉冲。电脉冲沿着轴突并通过突触传递到其它神经元。为了模拟神经细胞行为,与之对应的感知机基础概念被提出,如权量(突触)、偏置(阈值)及激活函数(细胞体)。
 
感知机是生物[[神经细胞]]的简单抽象。神经细胞结构大致可分为:树突、突触、细胞体及轴突。单个神经细胞可被视为一种只有两种状态的机器——激动时为『是』,而未激动时为『否』。神经细胞的状态取决于从其它的神经细胞收到的输入信号量,及突触的强度(抑制或加强)。当信号量总和超过了某个阈值时,细胞体就会激动,产生电脉冲。电脉冲沿着轴突并通过突触传递到其它神经元。为了模拟神经细胞行为,与之对应的感知机基础概念被提出,如权量(突触)、偏置(阈值)及激活函数(细胞体)。
   −
虽然生物神经元模型的复杂性是通常是理解神经行为所必须的。但研究表明,类感知机的线性模型也可以产生一些在真实神经元中看到的行为。<ref>Morel, D., Singh, C. & Levy, W.B. J Comput Neurosci (2018). http://rdcu.be/FDUo</ref><ref>Cash, Sydney, and Rafael Yuste. "Linear summation of excitatory inputs by CA1 pyramidal neurons." Neuron 22.2 (1999): 383-394.APA</ref>.
+
虽然生物神经元模型的复杂性是通常是理解神经行为所必须的。但研究表明,类感知机的线性模型也可以产生一些在真实神经元中看到的行为。<ref name= "office">Mikel Olazaran (1996). " A Sociological Study of the Official History of the Perceptrons Controversy". Social Studies of Science. 26 (3): 611–659 [http://journals.sagepub.com/doi/10.1177/030631296026003005 doi:10.1177/030631296026003005]. [https://en.wikipedia.org/wiki/JSTOR JSTOR] [https://www.jstor.org/stable/285702 285702]. </ref>
    
感知机的目的是成为一台机器,而不是一个程序,虽然它的第一个实现是在IBM 704的软件中完成的,但是它后来在定制的硬件中实现为"Mark 1 感知机"。这台机器是为图像识别而设计的:它有一个由400个光电池组成的阵列,随机与“神经元”相连。权重在电位器中编码,权重的更新是由电动马达完成的<ref name = "update">Bishop, Christopher M. (2006),  Pattern Recognition and Machine Learning. Springer.</ref>。
 
感知机的目的是成为一台机器,而不是一个程序,虽然它的第一个实现是在IBM 704的软件中完成的,但是它后来在定制的硬件中实现为"Mark 1 感知机"。这台机器是为图像识别而设计的:它有一个由400个光电池组成的阵列,随机与“神经元”相连。权重在电位器中编码,权重的更新是由电动马达完成的<ref name = "update">Bishop, Christopher M. (2006),  Pattern Recognition and Machine Learning. Springer.</ref>。
421

个编辑

导航菜单