更改

跳到导航 跳到搜索
添加5字节 、 2020年5月26日 (二) 21:02
第29行: 第29行:  
* Local bifurcations, which can be analysed entirely through changes in the local stability properties of [[Equilibrium point|equilibria]], periodic orbits or other invariant sets as parameters cross through critical thresholds; and
 
* Local bifurcations, which can be analysed entirely through changes in the local stability properties of [[Equilibrium point|equilibria]], periodic orbits or other invariant sets as parameters cross through critical thresholds; and
    +
局部
 
* Global bifurcations, which often occur when larger invariant sets of the system 'collide' with each other, or with equilibria of the system. They cannot be detected purely by a stability analysis of the equilibria (fixed points).
 
* Global bifurcations, which often occur when larger invariant sets of the system 'collide' with each other, or with equilibria of the system. They cannot be detected purely by a stability analysis of the equilibria (fixed points).
   第182行: 第183行:     
全局分岔还可以涉及更复杂的集合,如混沌吸引子(例如混沌吸引子)。危机)。
 
全局分岔还可以涉及更复杂的集合,如混沌吸引子(例如混沌吸引子)。危机)。
  −
      
==Codimension of a bifurcation==
 
==Codimension of a bifurcation==
163

个编辑

导航菜单