*入分量: <ref>{{Cite journal|last=Kryven|first=Ivan|date=2017-11-02|title=Finite connected components in infinite directed and multiplex networks with arbitrary degree distributions|journal=Physical Review E|volume=96|issue=5|pages=052304|doi=10.1103/PhysRevE.96.052304|pmid=29347790|arxiv=1709.04283|bibcode=2017PhRvE..96e2304K}}</ref><math display="block">h_\text{in}(n)=\frac{\mathbb E[k_{in}]}{n-1} \tilde u_\text{in}^{*n}(n-2), \;n>1, \; \tilde u_\text{in}=\frac{k_\text{in}+1}{\mathbb E[k_\text{in}]}\sum\limits_{k_\text{out}\geq 0}u(k_\text{in}+1,k_\text{out}) </math> | *入分量: <ref>{{Cite journal|last=Kryven|first=Ivan|date=2017-11-02|title=Finite connected components in infinite directed and multiplex networks with arbitrary degree distributions|journal=Physical Review E|volume=96|issue=5|pages=052304|doi=10.1103/PhysRevE.96.052304|pmid=29347790|arxiv=1709.04283|bibcode=2017PhRvE..96e2304K}}</ref><math display="block">h_\text{in}(n)=\frac{\mathbb E[k_{in}]}{n-1} \tilde u_\text{in}^{*n}(n-2), \;n>1, \; \tilde u_\text{in}=\frac{k_\text{in}+1}{\mathbb E[k_\text{in}]}\sum\limits_{k_\text{out}\geq 0}u(k_\text{in}+1,k_\text{out}) </math> |