A local bifurcation occurs when a parameter change causes the stability of an equilibrium (or fixed point) to change. In continuous systems, this corresponds to the real part of an eigenvalue of an equilibrium passing through zero. In discrete systems (those described by maps rather than ODEs), this corresponds to a fixed point having a [[Floquet multiplier]] with modulus equal to one. In both cases, the equilibrium is ''non-hyperbolic'' at the bifurcation point. | A local bifurcation occurs when a parameter change causes the stability of an equilibrium (or fixed point) to change. In continuous systems, this corresponds to the real part of an eigenvalue of an equilibrium passing through zero. In discrete systems (those described by maps rather than ODEs), this corresponds to a fixed point having a [[Floquet multiplier]] with modulus equal to one. In both cases, the equilibrium is ''non-hyperbolic'' at the bifurcation point. |