生物圈

来自集智百科 - 复杂系统|人工智能|复杂科学|复杂网络|自组织
跳到导航 跳到搜索

此词条暂由彩云小译翻译,翻译字数共1644,未经人工整理和审校,带来阅读不便,请见谅。

模板:Other uses 模板:Pp

A false-color composite of global oceanic and terrestrial photoautotroph abundance, from September 2001 to August 2017. Provided by the SeaWiFS Project, NASA/Goddard Space Flight Center and ORBIMAGE.[citation needed] 2001年9月至2017年8月全球海洋和陆地光自养生物丰度的假彩色合成图。由SeaWiFS项目,美国国家航空和航天局/戈达德航天飞行中心和ORBIMAGE公司提供。

The biosphere (from Greek βίος bíos "life" and σφαῖρα sphaira "sphere"), also known as the ecosphere (from Greek οἶκος oîkos "environment" and σφαῖρα), is the worldwide sum of all ecosystems. It can also be termed the zone of life on Earth. The biosphere is virtually a closed system with regard to matter, with minimal inputs and outputs. With regard to energy, it is an open system, with photosynthesis capturing solar energy at a rate of around 130 Terawatts per year.[1] However it is a self-regulating system close to energetic equilibrium.[2] On land, the soil carbon sponge is a regulatory component of this system. [3] By the most general biophysiological definition, the biosphere is the global ecological system integrating all living beings and their relationships, including their interaction with the elements of the lithosphere, cryosphere, hydrosphere, rhizosphere and atmosphere. The biosphere is postulated to have evolved, beginning with a process of biopoiesis (life created naturally from non-living matter, such as simple organic compounds) or biogenesis (life created from living matter), at least some 3.5 billion years ago.[4][5]

生物圈(源于希腊语 βίος bíos “ 生命”和 σφαῖρα sphaira “ 球体”) ,也称为生态圈(源于希腊语οἶκος oîkos“环境”和 σφαῖρα) ,是所有生态系统的总和,也可以称之为地球上的生命区。对于物质而言,生物圈实际上是一个封闭的系统,投入和产出极少。在能源方面,它每年可以通过光合作用获得130太瓦太阳能的开放系统[1]。生物圈是一个接近能量平衡的自我调节系统[2]。在陆地上,土壤碳海绵是这个系统的调节部分[3]。根据一般的生物生理学定义,生物圈是一个包含所有生物及其相互关系的全球生态系统,包括生物与岩石圈、冰冻圈、水圈、根际圈和大气层等要素的相互作用。一般认为生物圈是进化而来的,起始于至少35亿年前的生命形成过程(由非生命物质,如简单的有机化合物自然形成的生命)或生物发生过程(由生命物质形成的生命)[4][5]

In a general sense, biospheres are any closed, self-regulating systems containing ecosystems. This includes artificial biospheres such as Biosphere 2 and BIOS-3, and potentially ones on other planets or moons.[6]

一般来说,生物圈是指任何包含生态系统的封闭的、自我调节的系统。包括例如生物圈2号和生物圈3号等的人工生物圈以及其他行星或卫星上可能存在的生物圈[6]

Origin and use of the term

文件:90 mile beach.jpg
A beach scene on Earth, simultaneously showing the lithosphere (ground), hydrosphere (ocean) and atmosphere (air) 地球上的海滩场景,同时显示了岩石圈(地面)、水圈(海洋)和大气(空气)。

The term "biosphere" was coined by geologist Eduard Suess in 1875, which he defined as the place on Earth's surface where life dwells.[7]

“生物圈”一词是由地质学家 Eduard Suess在1875年提出的,他将生物圈定义为地球表面生物居住的地方[7]

While the concept has a geological origin, it is an indication of the effect of both Charles Darwin and Matthew F. Maury on the Earth sciences. The biosphere's ecological context comes from the 1920s (see Vladimir I. Vernadsky), preceding the 1935 introduction of the term "ecosystem" by Sir Arthur Tansley (see ecology history). Vernadsky defined ecology as the science of the biosphere. It is an interdisciplinary concept for integrating astronomy, geophysics, meteorology, biogeography, evolution, geology, geochemistry, hydrology and, generally speaking, all life and Earth sciences.

虽然这个概念起源于地质学,但它表明了查尔斯 · 达尔文和马修 · F · 莫里对地球科学的影响。生物圈的生态语境起源于20世纪20年代(见弗拉基米尔 · I· 沃尔纳德斯基) ,在1935年亚瑟 · 坦斯利爵士引入“生态系统”一词之前(见生态史)。沃尔纳德斯基把生态学定义为生物圈科学。它是一个集天文学、地球物理学、气象学、生物地理学、进化学、地质学、地球化学、水文学以及所有生命和地球科学于一体的跨学科概念。

Narrow definition

Geochemists define the biosphere as being the total sum of living organisms (the "biomass" or "biota" as referred to by biologists and ecologists). In this sense, the biosphere is but one of four separate components of the geochemical model, the other three being geosphere, hydrosphere, and atmosphere. When these four component spheres are combined into one system, it is known as the Ecosphere. This term was coined during the 1960s and encompasses both biological and physical components of the planet.[8]

= = 狭义定义 = =

地球化学家将生物圈定义为生物有机体的总和(生物学家和生态学家称之为”生物量”或”生物群”)。从这个意义上讲,生物圈只是四个地球化学模型的独立组成部分之一,其他三个是地球圈、水圈和大气圈。当这四个组成的球体组合成一个系统时,它就被称为生态球。这个术语是在20世纪60年代提出的,包含了地球的生物成分和物理成分[8]

The Second International Conference on Closed Life Systems defined biospherics as the science and technology of analogs and models of Earth's biosphere; i.e., artificial Earth-like biospheres.[9] Others may include the creation of artificial non-Earth biospheres—for example, human-centered biospheres or a native Martian biosphere—as part of the topic of biospherics.[citation needed]

第二次封闭生命系统国际会议将生物圈学界定为地球生物圈的类似物和模型的科学和技术,即人工地球样生物圈[9]。其他与创建人工非地球生物圈相关的生物圈也作为生物圈学主题的一部分,例如以人为中心的生物圈或火星本土生物圈。

Earth's biosphere

Age

文件:Stromatolithe Paléoarchéen - MNHT.PAL.2009.10.1.jpg
Stromatolite fossil estimated at 3.2–3.6 billion years old.距估计,叠层石化石有32-36亿年的历史。

The earliest evidence for life on Earth includes biogenic graphite found in 3.7 billion-year-old metasedimentary rocks from Western Greenland[10] and microbial mat fossils found in 3.48 billion-year-old sandstone from Western Australia.[11][12] More recently, in 2015, "remains of biotic life" were found in 4.1 billion-year-old rocks in Western Australia.[13][14] In 2017, putative fossilized microorganisms (or microfossils) were announced to have been discovered in hydrothermal vent precipitates in the Nuvvuagittuq Belt of Quebec, Canada that were as old as 4.28 billion years, the oldest record of life on earth, suggesting "an almost instantaneous emergence of life" after ocean formation 4.4 billion years ago, and not long after the formation of the Earth 4.54 billion years ago.[15][16][17][18] According to biologist Stephen Blair Hedges, "If life arose relatively quickly on Earth ... then it could be common in the universe."[13]

年龄

地球上存在生命的最早证据包括在西格陵兰岛[10]的37亿年历史的变质沉积岩中发现的生物石墨和在西澳大利亚的34.8亿年历史的砂岩中发现的微生物垫[11][12]。2015年在西澳大利亚的41亿年前的岩石中发现了“生物生命的遗迹”[13][14]。2017年,在加拿大 魁北克努夫亚吉图克地表带的深海热泉沉淀物中发现了假定存在的微生物化石(或微生物化石) ,这些沉淀物有42.8亿年的历史,是地球上最古老的生命记录。这表明在44亿年前海洋形成之后以及在45.4亿年前地球形成之后不久[15][16][17][18],“几乎是瞬间出现了生命”。生物学家史蒂芬 · 布莱尔 · 赫奇斯认为: “如果地球上的生命出现得相对较快...那么这在宇宙中可能很常见[13]。”

Extent

文件:Ruppelsvulture.jpg
Rüppell's vulture 黑白秃鹫
文件:XenophyophoreNOAA.jpg
Xenophyophore, a barophilic organism, from the Galapagos Rift.加拉帕戈斯裂谷中一种噬压的微生物。

Every part of the planet, from the polar ice caps to the equator, features life of some kind. Recent advances in microbiology have demonstrated that microbes live deep beneath the Earth's terrestrial surface, and that the total mass of microbial life in so-called "uninhabitable zones" may, in biomass, exceed all animal and plant life on the surface. The actual thickness of the biosphere on earth is difficult to measure. Birds typically fly at altitudes as high as 模板:Convert and fish live as much as 模板:Convert underwater in the Puerto Rico Trench.[4]

从极地冰帽到赤道,地球上的每个角落都有某种生命的特征。微生物学的最新进展表明,微生物生活在地球陆地表面以下的深处。在所谓的”不宜居住区”中,微生物生命的总数量可能超过地表上的所有动物和植物生命。地球上生物圈的实际厚度很难测量,鸟类通常在高度和鱼类一样高的地方飞行,而鱼类生活在波多黎各海沟的水下[4]

There are more extreme examples for life on the planet: Rüppell's vulture has been found at altitudes of 模板:Convert; bar-headed geese migrate at altitudes of at least 模板:Convert; yaks live at elevations as high as 模板:Convert above sea level; mountain goats live up to 模板:Convert. Herbivorous animals at these elevations depend on lichens, grasses, and herbs.

关于地球上的生命还有更多极端的例子: 黑白兀鹫生活在海拔11,300米的高度; 斑头雁可以在在海拔8300米以上的高度迁徙; 牦牛可以在5400米海拔的高度生活; 山羊生活在海拔3530米的地方。这些海拔地区的食草动物依靠地衣、草和草本植物生存。

Life forms live in every part of the Earth's biosphere, including soil, hot springs, inside rocks at least 模板:Convert deep underground, the deepest parts of the ocean, and at least 模板:Convert high in the atmosphere.[19][20][21] Microorganisms, under certain test conditions, have been observed to survive the vacuum of outer space.[22][23] The total amount of soil and subsurface bacterial carbon is estimated as 5 × 1017 g, or the "weight of the United Kingdom".[19] The mass of prokaryote microorganisms—which includes bacteria and archaea, but not the nucleated eukaryote microorganisms—may be as much as 0.8 trillion tons of carbon (of the total biosphere mass, estimated at between 1 and 4 trillion tons).[24] Barophilic marine microbes have been found at more than a depth of 模板:Convert in the Mariana Trench, the deepest spot in the Earth's oceans.[25] In fact, single-celled life forms have been found in the deepest part of the Mariana Trench, by the Challenger Deep, at depths of 模板:Convert.[26][27][28] Other researchers reported related studies that microorganisms thrive inside rocks up to 模板:Convert below the sea floor under 模板:Convert of ocean off the coast of the northwestern United States,[27][29] as well as 模板:Convert beneath the seabed off Japan.[30] Culturable thermophilic microbes have been extracted from cores drilled more than 模板:Convert into the Earth's crust in Sweden,[31] from rocks between 模板:Convert. Temperature increases with increasing depth into the Earth's crust. The rate at which the temperature increases depends on many factors, including type of crust (continental vs. oceanic), rock type, geographic location, etc. The greatest known temperature at which microbial life can exist is 模板:Convert (Methanopyrus kandleri Strain 116), and it is likely that the limit of life in the "deep biosphere" is defined by temperature rather than absolute depth.[citation needed] On 20 August 2014, scientists confirmed the existence of microorganisms living 模板:Convert below the ice of Antarctica.[32][33] According to one researcher, "You can find microbes everywhere – they're extremely adaptable to conditions, and survive wherever they are."[27]

生命形式生活在地球生物圈的每一个部分,包括土壤、温泉、深入地下的岩石、海洋的最深处,以及高出大气层的地方[19][20][21]。人们观察到微生物在某些试验条件下可以在外层空间的真空环境中生存[22][23]。土壤和地下细菌碳的总量估计为5 × 1017克,即“英国的重量”[19]。原核微生物包括细菌和古细菌,但不包括核真核微生物,其数量可能高达0.8万亿吨碳(经测量生物圈中碳的总质量在1万亿至4万亿吨之间)[24]。在地球海洋的最深处[25]——马里亚纳海沟,科学家已经发现了一些嗜热的海洋微生物。事实上,在马里亚纳海沟最深处的挑战者深渊深度为([26][27][28]没有具体数字)处已经发现了单细胞生命形式。其他研究者有相关研究发现微生物在美国西北部海岸海底以下的岩石中[27][29],以及在日本海床以下的岩石中大量繁殖[30]。在瑞典地壳的岩芯的石缝中提取出了可培养的嗜热微生物[31]。温度随着地壳深度的增加而上升。温度上升的速度取决于许多因素,包括地壳类型(大陆还是海洋)、岩石类型、地理位置等。已知微生物生存的最高温度是(此处原文没写具体温度)(Methanopyrus kandleri菌株116) ,”深层生物圈”中的生命极限可能是由温度而不是绝对深度来界定的。2014年8月20日,科学家证实了生活在南极冰层下的微生物的存在[32][33]。其中一位研究人员说:“你可以在所有地方发现微生物——它们对环境的适应性极强,无论在哪里都能生存[27]。”

Our biosphere is divided into a number of biomes, inhabited by fairly similar flora and fauna. On land, biomes are separated primarily by latitude. Terrestrial biomes lying within the Arctic and Antarctic Circles are relatively barren of plant and animal life, while most of the more populous biomes lie near the equator.

我们的生物圈被划分为若干个生物群落,群落内居住着非常相似的动植物。在陆地上,生物群落主要是按纬度分开的。位于北极圈和南极圈内的陆地生物群落相对来说缺乏动植物生命,而大多数数量密集的生物群落则位于赤道附近。

Annual variation

On land, vegetation appears on a scale from brown (low vegetation) to dark green (heavy vegetation); at the ocean surface, phytoplankton are indicated on a scale from purple (low) to yellow (high). This visualization was created with data from satellites including SeaWiFS, and instruments including the NASA/NOAA Visible Infrared Imaging Radiometer Suite and the Moderate Resolution Imaging Spectroradiometer.

= = = = 年际变化 = =

在陆地上,植被从褐色(低植被)到深绿色(重植被)呈现; 在海洋表面,浮游植物从紫色(低)到黄色(高)呈现。这一可视化的数据来自卫星,例如 SeaWiFS和包括 NASA/NOAA 可见光/红外光影像辐射仪和中分辨率成像光谱仪在内的仪器。

Artificial biospheres

文件:Biosphere 2 4888964549.jpg
Biosphere 2 in Arizona.亚利桑那州的生物圈2号。

Experimental biospheres, also called closed ecological systems, have been created to study ecosystems and the potential for supporting life outside the Earth. These include spacecraft and the following terrestrial laboratories:

= = 人工生物圈 = =

实验生物圈,也被称为封闭的生态系统。目前已有研究制造实验生物圈来研究生态系统和支持地球以外生命的潜力,包括航天器和以下地面实验室:

  • 美国亚利桑那州的生物圈2号,占地3.15英亩(13,000平方米)。
  • 克拉斯诺雅茨克生物物理研究所的 BIOS-1、 BIOS-2和 BIOS-3[34]
  • 日本的生物圈 J(CEEF,封闭式生态实验设施)[35][36]
  • 巴塞罗那自治大学的微生态生命支持系统

Extraterrestrial biospheres

No biospheres have been detected beyond the Earth; therefore, the existence of extraterrestrial biospheres remains hypothetical. The rare Earth hypothesis suggests they should be very rare, save ones composed of microbial life only.[37] On the other hand, Earth analogs may be quite numerous, at least in the Milky Way galaxy, given the large number of planets.[38] Three of the planets discovered orbiting TRAPPIST-1 could possibly contain biospheres.[39] Given limited understanding of abiogenesis, it is currently unknown what percentage of these planets actually develop biospheres.

由于在地球以外还没有发现生物圈,所以目前外星生物圈的存在仍然是假设。地球殊异假说认为除了那些只由微生物组成的生物圈[37],生物圈应该是非常稀有的。另一方面,由于存在着大量的行星,所以类地行星可能非常的多(至少在银河系很多)[38]。已发现的围绕特拉普斯特一号运行的三颗行星可能含有生物圈。鉴于对自然发生的了解有限,目前还不清楚这些行星中究竟有多大比例发展出了生物圈。

Based on observations by the Kepler Space Telescope team, it has been calculated that provided the probability of abiogenesis is higher than 1 to 1000, the closest alien biosphere should be within 100 light-years from the Earth.[40]

根据开普勒太空望远镜小组的观测,计算出如果自然发生的概率大于1至1000,那么最近的外星生物圈应该在距离地球100光年以内[40]

It is also possible that artificial biospheres will be created in the future, for example with the terraforming of Mars.[41]

未来也有可能创造出人工生物圈,例如火星地球化[41]

See also

模板:Portal


  • Climate system
  • Cryosphere
  • Thomas Gold
  • Habitable zone
  • Homeostasis
  • Life support system
  • Man and the Biosphere Programme
  • Montreal Biosphère
  • Noogenesis
  • Noosphere
  • Rare biosphere
  • Shadow biosphere
  • Simple biosphere model
  • Soil biomantle
  • Wardian case
  • Winogradsky column

参见

  • 气候系统
  • 冰冻圈
  • 托马斯.戈尔德
  • 适居带
  • 体内稳态
  • 生命支持系统
  • 人与生物圈计划
  • 蒙特利尔生物博物馆
  • 心理演化
  • 人类圈
  • 稀有生物圈
  • 影子生物圈
  • 简单生物圈模型
  • 土壤生物量
  • 瓦尔登氏植物培养箱
  • 维诺格拉斯基柱

References

  1. 1.0 1.1 Nealson, Kenneth H.; Zeki, S.; Conrad, Pamela G. (1999). "Life: past, present and future". Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences. 354 (1392): 1923–1939. doi:10.1098/rstb.1999.0532. PMC 1692713. PMID 10670014.
  2. 2.0 2.1 "Biosphere" in The Columbia Encyclopedia, 6th ed. (2004) Columbia University Press.
  3. 3.0 3.1 Jehne, Walter, Regenerate Earth, accessed 2022
  4. 4.0 4.1 4.2 4.3 Campbell, Neil A.; Brad Williamson; Robin J. Heyden (2006). Biology: Exploring Life. Boston, Massachusetts: Pearson Prentice Hall. ISBN 978-0-13-250882-7. http://www.phschool.com/el_marketing.html. 
  5. 5.0 5.1 Zimmer, Carl (3 October 2013). "Earth's Oxygen: A Mystery Easy to Take for Granted". The New York Times. Archived from the original on 3 October 2013. Retrieved 3 October 2013.
  6. 6.0 6.1 "Meaning of biosphere". WebDictionary.co.uk. WebDictionary.co.uk. Archived from the original on 2011-10-02. Retrieved 2010-11-12.
  7. 7.0 7.1 Suess, E. (1875) Die Entstehung Der Alpen [The Origin of the Alps]. Vienna: W. Braunmuller.
  8. 8.0 8.1 Möller, Detlev (December 2010). Chemistry of the Climate System. De Gruyter. pp. 118–119. ISBN 978-3-11-022835-9. https://archive.org/details/chemistryclimate00mlle. 
  9. 9.0 9.1 Bebarta, Kailash Chandra (2011). Dictionary of Forestry and Wildlife Science. New Delhi: Concept Publishing Company. p. 45. ISBN 978-81-8069-719-7. 
  10. 10.0 10.1 Ohtomo, Yoko; Kakegawa, Takeshi; Ishida, Akizumi; Nagase, Toshiro; Rosing, Minik T. (8 December 2013). "Evidence for biogenic graphite in early Archaean Isua metasedimentary rocks". Nature Geoscience. 7 (1): 25–28. Bibcode:2014NatGe...7...25O. doi:10.1038/ngeo2025.
  11. 11.0 11.1 Borenstein, Seth (13 November 2013). "Oldest fossil found: Meet your microbial mom". AP News. Archived from the original on 29 June 2015. Retrieved 15 November 2013.
  12. 12.0 12.1 Noffke, Nora; Christian, Daniel; Wacey, David; Hazen, Robert M. (8 November 2013). "Microbially Induced Sedimentary Structures Recording an Ancient Ecosystem in the ca. 3.48 Billion-Year-Old Dresser Formation, Pilbara, Western Australia". Astrobiology. 13 (12): 1103–24. Bibcode:2013AsBio..13.1103N. doi:10.1089/ast.2013.1030. PMC 3870916. PMID 24205812.
  13. 13.0 13.1 13.2 13.3 Borenstein, Seth (19 October 2015). "Hints of life on what was thought to be desolate early Earth". Excite. Yonkers, NY: Mindspark Interactive Network. Associated Press. Archived from the original on 1 October 2018. Retrieved 8 October 2018.
  14. 14.0 14.1 Bell, Elizabeth A.; Boehnike, Patrick; Harrison, T. Mark; et al. (19 October 2015). "Potentially biogenic carbon preserved in a 4.1 billion-year-old zircon". Proc. Natl. Acad. Sci. U.S.A. 112 (47): 14518–21. Bibcode:2015PNAS..11214518B. doi:10.1073/pnas.1517557112. PMC 4664351. PMID 26483481. Early edition, published online before print.
  15. 15.0 15.1 Dodd, Matthew S.; Papineau, Dominic; Grenne, Tor; Slack, John F.; Rittner, Martin; Pirajno, Franco; O'Neil, Jonathan; Little, Crispin T. S. (2 March 2017). "Evidence for early life in Earth's oldest hydrothermal vent precipitates" (PDF). Nature. 343 (7643): 60–64. Bibcode:2017Natur.543...60D. doi:10.1038/nature21377. PMID 28252057. S2CID 2420384. Archived (PDF) from the original on 23 July 2018. Retrieved 19 February 2019.
  16. 16.0 16.1 Zimmer, Carl (1 March 2017). "Scientists Say Canadian Bacteria Fossils May Be Earth's Oldest". The New York Times. Archived from the original on 2 March 2017. Retrieved 2 March 2017.
  17. 17.0 17.1 Ghosh, Pallab (1 March 2017). "Earliest evidence of life on Earth 'found". BBC News. Archived from the original on 2 March 2017. Retrieved 2 March 2017.
  18. 18.0 18.1 Dunham, Will (1 March 2017). "Canadian bacteria-like fossils called oldest evidence of life". Reuters. Archived from the original on 2 March 2017. Retrieved 1 March 2017.
  19. 19.0 19.1 19.2 19.3 University of Georgia (25 August 1998). "First-Ever Scientific Estimate Of Total Bacteria On Earth Shows Far Greater Numbers Than Ever Known Before". Science Daily. Archived from the original on 10 November 2014. Retrieved 10 November 2014.
  20. 20.0 20.1 Hadhazy, Adam (12 January 2015). "Life Might Thrive a Dozen Miles Beneath Earth's Surface". Astrobiology Magazine. Archived from the original on 12 March 2017. Retrieved 11 March 2017.
  21. 21.0 21.1 Fox-Skelly, Jasmin (24 November 2015). "The Strange Beasts That Live In Solid Rock Deep Underground". BBC Online. Archived from the original on 25 November 2016. Retrieved 11 March 2017.
  22. 22.0 22.1 Zhang, K. Dose; A. Bieger-Dose; R. Dillmann; M. Gill; O. Kerz (1995). A. Klein, H. Meinert, T. Nawroth, S. Risi, C. Stride. "ERA-experiment "space biochemistry"". Advances in Space Research. 16 (8): 119–129. Bibcode:1995AdSpR..16..119D. doi:10.1016/0273-1177(95)00280-R. PMID 11542696.
  23. 23.0 23.1 Horneck G; Eschweiler U; Reitz G; Wehner J; Willimek R; Strauch K. (1995). "Biological responses to space: results of the experiment "Exobiological Unit" of ERA on EURECA I". Adv. Space Res. 16 (8): 105–18. Bibcode:1995AdSpR..16..105H. doi:10.1016/0273-1177(95)00279-N. PMID 11542695.
  24. 24.0 24.1 Staff (2014). "The Biosphere". Aspen Global Change Institute. Archived from the original on 10 November 2014. Retrieved 10 November 2014.
  25. 25.0 25.1 Takamia; et al. (1997). "Microbial flora in the deepest sea mud of the Mariana Trench". FEMS Microbiology Letters. 152 (2): 279–285. doi:10.1111/j.1574-6968.1997.tb10440.x. PMID 9231422.
  26. 26.0 26.1 "National Geographic, 2005". Archived from the original on 2012-08-22. Retrieved 2012-12-18.
  27. 27.0 27.1 27.2 27.3 27.4 27.5 Choi, Charles Q. (17 March 2013). "Microbes Thrive in Deepest Spot on Earth". LiveScience. Archived from the original on 2 April 2013. Retrieved 17 March 2013.
  28. 28.0 28.1 Glud, Ronnie; Wenzhöfer, Frank; Middelboe, Mathias; Oguri, Kazumasa; Turnewitsch, Robert; Canfield, Donald E.; Kitazato, Hiroshi (17 March 2013). "High rates of microbial carbon turnover in sediments in the deepest oceanic trench on Earth". Nature Geoscience. 6 (4): 284–288. Bibcode:2013NatGe...6..284G. doi:10.1038/ngeo1773.
  29. 29.0 29.1 Oskin, Becky (14 March 2013). "Intraterrestrials: Life Thrives in Ocean Floor". LiveScience. Archived from the original on 2 April 2013. Retrieved 17 March 2013.
  30. 30.0 30.1 Morelle, Rebecca (15 December 2014). "Microbes discovered by deepest marine drill analysed". BBC News. Archived from the original on 16 December 2014. Retrieved 15 December 2014.
  31. 31.0 31.1 Szewzyk, U; Szewzyk, R; Stenstrom, TR. (1994). "Thermophilic, anaerobic bacteria isolated from a deep borehole in granite in Sweden". Proceedings of the National Academy of Sciences of the USA. 91 (5): 1810–1813. Bibcode:1994PNAS...91.1810S. doi:10.1073/pnas.91.5.1810. PMC 43253. PMID 11607462.
  32. 32.0 32.1 Fox, Douglas (20 August 2014). "Lakes under the ice: Antarctica's secret garden". Nature. 512 (7514): 244–246. Bibcode:2014Natur.512..244F. doi:10.1038/512244a. PMID 25143097.
  33. 33.0 33.1 Mack, Eric (20 August 2014). "Life Confirmed Under Antarctic Ice; Is Space Next?". Forbes. Archived from the original on 22 August 2014. Retrieved 21 August 2014.
  34. 34.0 34.1 Salisbury FB; Gitelson JI; Lisovsky GM (Oct 1997). "Bios-3: Siberian experiments in bioregenerative life support". BioScience. 47 (9): 575–85. doi:10.2307/1313164. JSTOR 1313164. PMID 11540303.
  35. 35.0 35.1 Nakano; et al. (1998). "Dynamic Simulation of Pressure Control System for the Closed Ecology Experiment Facility". Transactions of the Japan Society of Mechanical Engineers Series B. 64 (617): 107–114. doi:10.1299/kikaib.64.107. Archived from the original on 2012-03-18. Retrieved 2009-11-14.
  36. 36.0 36.1 "Institute for Environmental Sciences". Ies.or.jp. Archived from the original on 2011-11-08. Retrieved 2011-11-08.
  37. 37.0 37.1 Ward, Peter D.; Brownlee, Donald (2004). Rare earth: why complex life is uncommon in the universe (2nd rev. ed.). New York: Copernicus. ISBN 978-0-387-95289-5. 
  38. 38.0 38.1 Choi, Charles Q. (21 March 2011). "New Estimate for Alien Earths: 2 Billion in Our Galaxy Alone". Space.com. Archived from the original on 24 August 2017. Retrieved 25 September 2017.
  39. Rees, Sir Martin (22 February 2017). "These new worlds are just the start. There are many more life-supporting planets out there waiting to be discovered". The Telegraph. Archived from the original on 25 September 2017. Retrieved 25 September 2017.
  40. 40.0 40.1 Amri Wandel, On the abundance of extraterrestrial life after the Kepler mission -{zh-cn:互联网档案馆; zh-tw:網際網路檔案館; zh-hk:互聯網檔案館;}-存檔,存档日期2018-08-17.
  41. 41.0 41.1 Zubrin, Robert; Wagner, Richard (2011). The Case for Mars: The Plan to Settle the Red Planet and Why We Must. Simon & Schuster. ISBN 978-1451608113. 

Further reading

  • The Biosphere (A Scientific American Book), San Francisco, W.H. Freeman and Co., 1970, . This book, originally the December 1970 Scientific American issue, covers virtually every major concern and concept since debated regarding materials and energy resources (including solar energy), population trends, and environmental degradation (including global warming).
    • The Biosphere (A Scientific American Book), San Francisco, W.H. Freeman and Co., 1970, . This book, originally the December 1970 Scientific American issue, covers virtually every major concern and concept since debated regarding materials and energy resources (including solar energy), population trends, and environmental degradation (including global warming).

    = 延展阅读 = =

    • 《生物圈》(美国科学人出版社),San Francisco, W.H. Freeman and Co., 1970, .这本书,最初是1970年12月的《科学美国人》杂志,几乎涵盖了自从讨论了材料和能源资源(包括太阳能) ,人口趋势和生物可分解添加物(包括全球变暖)以来的每一个主要关注点和概念。

    External links


    • Article on the Biosphere at Encyclopedia of Earth
    • GLOBIO.info, an ongoing programme to map the past, current and future impacts of human activities on the biosphere
    • Paul Crutzen Interview, freeview video of Paul Crutzen Nobel Laureate for his work on decomposition of ozone talking to Harry Kroto Nobel Laureate by the Vega Science Trust.
    • Atlas of the Biosphere

    = 延展阅读链接 = =

    • 地球百科全书中关于生物圈的文章
    • GLOBIO.info,这是一个正在进行的项目,旨在绘制人类活动对生物圈的过去、现在和未来的影响
    • 保罗·克鲁岑访谈录,这是诺贝尔奖获得者保罗 · 克鲁岑就其在臭氧分解方面的工作与维加科学信托基金的诺贝尔奖获得者哈里 · 克罗托交谈的视频。
    • 生物圈图集

    模板:Nature nav 模板:Environmental science 模板:Sustainability 模板:Biological organisation 模板:Natural resources

    Category:Oceanography Category:Superorganisms Category:Biological systems

    类别: 海洋学 类别: 超级生物 类别: 生物系统


    This page was moved from wikipedia:en:Biosphere. Its edit history can be viewed at 生物圈/edithistory