因果森林 Causal Forest
(重定向自YG1-D7)
跳到导航
跳到搜索
因果森林 (Causal Forest) 是由 Wager and Athey [2017] 提出的异质因果效应估计算法。该算法本质上可以理解成通过子采样生成大量不同的因果树,然后取这些树的平均。 类似于随机森林算法,因果森林可以被理解成一种近邻匹配算法,但是用数据驱动的方法来确定样本之间的相似度。
介绍
待补充
$$\hat{\theta}(x) = \argmin_{\theta} \sum_{i=1}^n K_x(X_i)\cdot \left( Y_i - \hat{q}(X_i, W_i) - \theta \cdot (T_i - \hat{f}(X_i, W_i)) \right)^2$$
算法
待补充 ....
算法实现
Python 包 econml 和 R 包 grf 都有实现该算法。
参考文献
Recursive Partitioning for Heterogeneous Causal Effects - arXiv
[Submitted on 5 Apr 2015 (v1), last revised 30 Dec 2015 (this version, v3)]
Estimation and Inference of Heterogeneous Treatment Effects ...
[Submitted on 14 Oct 2015 (v1), last revised 10 Jul 2017 (this version, v4)]
Generalized Random Forests - arXiv
[Submitted on 5 Oct 2016 (v1), last revised 5 Apr 2018 (this version, v4)]
Machine Learning Methods Economists Should Know About
[Submitted on 24 Mar 2019]
编者推荐
待补充