第179行: |
第179行: |
| ===测量——联系空间标度和时间的纽带=== | | ===测量——联系空间标度和时间的纽带=== |
| | | |
− | 为了更清楚地看出从观察者的角度出发来重新审视各种物理问题的重要性,让我们考察另外一个例子。<br>
| + | 为了更清楚地看出从观察者的角度出发来重新审视各种物理问题的重要性,让我们考察另外一个例子。<br> |
− | [[File:xtzdgcz3_26.gif|图3-13|居中]]<br> | + | [[File:xtzdgcz3_26.gif|图3-13 对电子位置的测量|居中|thumb]]<br> |
− | <center>图3-13 对电子位置的测量</center><br> | + | <center>图3-13 </center><br> |
− | 假设容器中有一个电子,我们想知道这个电子所在的精确位置。于是我们展开对电子的测量。第一次测量的时候,由于我们测量的精度非常粗糙,我们只能判断出电子在容器中心的左侧还是右侧,假如我们知道电子是在左侧;第二次,我们可以提高测量的精度了,从而精确到容器尺度的1/4。因为我们已经知道了电子在左侧,所以我们再对左侧的这个方格进行一次更精确的测量,假设这次电子仍然在左侧的1/4方格中。第三次,我们用更高的精度测量电子的位置,得到电子在右侧的1/8方格中,这个过程还可以无限延伸下去……。<br>
| + | |
− | 不难想象,这样一个采用不同精度对电子位置的测量过程可以用下图表示:<br>
| + | 假设容器中有一个电子,我们想知道这个电子所在的精确位置。于是我们展开对电子的测量。第一次测量的时候,由于我们测量的精度非常粗糙,我们只能判断出电子在容器中心的左侧还是右侧,假如我们知道电子是在左侧;第二次,我们可以提高测量的精度了,从而精确到容器尺度的1/4。因为我们已经知道了电子在左侧,所以我们再对左侧的这个方格进行一次更精确的测量,假设这次电子仍然在左侧的1/4方格中。第三次,我们用更高的精度测量电子的位置,得到电子在右侧的1/8方格中,这个过程还可以无限延伸下去……。<br> |
| + | 不难想象,这样一个采用不同精度对电子位置的测量过程可以用下图表示:<br> |
| [[File:xtzdgcz3_27.gif|居中]]<br> | | [[File:xtzdgcz3_27.gif|居中]]<br> |
− | 这张图表示在不同的尺度下对粒子所在位置进行测量。在1/2尺度下,询问粒子是在左侧还是在右侧,在1/4尺度下再次询问粒子在左侧还是右侧。其中箭头的方向表示测量所蕴含的因果方向,也就是如果我在1/2尺度下测量知道粒子在左侧,那就意味着该格子在1/4尺度下测量粒子要么在左侧要么在右侧。<br>
| + | |
− | 我们可以考虑一个类似的在时间上进行的电子双缝试验,如下图:<br>
| + | 这张图表示在不同的尺度下对粒子所在位置进行测量。在1/2尺度下,询问粒子是在左侧还是在右侧,在1/4尺度下再次询问粒子在左侧还是右侧。其中箭头的方向表示测量所蕴含的因果方向,也就是如果我在1/2尺度下测量知道粒子在左侧,那就意味着该格子在1/4尺度下测量粒子要么在左侧要么在右侧。<br> |
| + | |
| + | |
| + | 我们可以考虑一个类似的在时间上进行的电子双缝试验,如下图:<br> |
| [[File:xtzdgcz3_28.gif|居中]]<br> | | [[File:xtzdgcz3_28.gif|居中]]<br> |
− | 假设电子经过一系列装有双缝的屏幕从右侧飞向左侧。观察者从左侧往右侧测量,也就是说,观察者先要确认在最左侧的一步电子经过了左侧的缝隙还是右侧的缝隙;然后在获得了消息之后,再询问电子上一时刻是飞过了左缝还是右缝,然后再询问……。图中的实箭头表示电子的“运动方向”(根据量子力学,电子应没有运动轨迹,箭头仅仅为了表示方便),图中的虚箭头则表示观察者询问问题的方向。比较这两张图我们发现,他们在观测的结构上是完全等价的。<br>
| + | |
− | 也就是说,在空间不同标度上对电子位置的测量完全等价于在不同时刻对一个电子经过若干双缝的情况进行测量。同时,我们还应注意到一个非常重要的事实:'''时间等价于观测标度的对数'''(参加两幅图上面在不同节点的数字标注)。<br>
| + | 假设电子经过一系列装有双缝的屏幕从右侧飞向左侧。观察者从左侧往右侧测量,也就是说,观察者先要确认在最左侧的一步电子经过了左侧的缝隙还是右侧的缝隙;然后在获得了消息之后,再询问电子上一时刻是飞过了左缝还是右缝,然后再询问……。图中的实箭头表示电子的“运动方向”(根据量子力学,电子应没有运动轨迹,箭头仅仅为了表示方便),图中的虚箭头则表示观察者询问问题的方向。比较这两张图我们发现,他们在观测的结构上是完全等价的。<br> |
− | 一旦我们将这两种描述联系起来,我们将有可能建立起量子概率和分形几何之间的深刻联系,从而可以互相借鉴对方的工具。比如,分形中的标度不变性就对应了在时间上测量的不变性。根据量子力学我们知道,任何一种时空上的对称性结构就对应了一种守恒性。所以,时间对称性结构自然会要求能量守恒。而我们看到了标度不变性与时间不变性的关系,那么也就意味着'''我们可以在标度的变换中找到某种守恒量,也许这种量可以称之为标度的哈密顿量,它在任何一种标度中都是守恒的'''。<br>
| + | |
− | 总之,我们可以把量子测量理论中的很多概念平移到空间尺度的测量中,这就可能为复杂系统建立一套基于观察者的测量理论。<br>
| + | |
− | 通过上面的论述,我们已经学会用一种从科学的背景——观察者的角度出发来看待现代物理学的本领。渐渐地发现,如果放弃真实不变的世界的说法,我们不仅得不出任何自相矛盾的结果,反而得出了对这个世界更加简洁而深刻的描述:观察者无论在时间还是空间上去测量,都会得出相似的结论(标度不变性和时间不变性)。<br>
| + | 也就是说,在空间不同标度上对电子位置的测量完全等价于在不同时刻对一个电子经过若干双缝的情况进行测量。同时,我们还应注意到一个非常重要的事实:'''时间等价于观测标度的对数'''(参加两幅图上面在不同节点的数字标注)。<br> |
| + | |
| + | |
| + | 一旦我们将这两种描述联系起来,我们将有可能建立起量子概率和分形几何之间的深刻联系,从而可以互相借鉴对方的工具。比如,分形中的标度不变性就对应了在时间上测量的不变性。根据量子力学我们知道,任何一种时空上的对称性结构就对应了一种守恒性。所以,时间对称性结构自然会要求能量守恒。而我们看到了标度不变性与时间不变性的关系,那么也就意味着'''我们可以在标度的变换中找到某种守恒量,也许这种量可以称之为标度的哈密顿量,它在任何一种标度中都是守恒的'''。<br> |
| + | |
| + | |
| + | 总之,我们可以把量子测量理论中的很多概念平移到空间尺度的测量中,这就可能为复杂系统建立一套基于观察者的测量理论。<br> |
| + | |
| + | |
| + | 通过上面的论述,我们已经学会用一种从科学的背景——观察者的角度出发来看待现代物理学的本领。渐渐地发现,如果放弃真实不变的世界的说法,我们不仅得不出任何自相矛盾的结果,反而得出了对这个世界更加简洁而深刻的描述:观察者无论在时间还是空间上去测量,都会得出相似的结论(标度不变性和时间不变性)。<br> |
| | | |
| ===熵——对观测自身的测量=== | | ===熵——对观测自身的测量=== |