第326行: |
第326行: |
| | | |
| :<math>p(x,y)\approx \sum_w p^\prime (x,w) p^{\prime\prime}(w,y)</math> | | :<math>p(x,y)\approx \sum_w p^\prime (x,w) p^{\prime\prime}(w,y)</math> |
− |
| |
− | <math>p(x,y)\approx \sum_w p^\prime (x,w) p^{\prime\prime}(w,y)</math>
| |
| | | |
| | | |
第333行: |
第331行: |
| Alternately, one might be interested in knowing how much more information <math>p(x,y)</math> carries over its factorization. In such a case, the excess information that the full distribution <math>p(x,y)</math> carries over the matrix factorization is given by the Kullback-Leibler divergence | | Alternately, one might be interested in knowing how much more information <math>p(x,y)</math> carries over its factorization. In such a case, the excess information that the full distribution <math>p(x,y)</math> carries over the matrix factorization is given by the Kullback-Leibler divergence |
| | | |
− | Alternately, one might be interested in knowing how much more information <math>p(x,y)</math> carries over its factorization. In such a case, the excess information that the full distribution <math>p(x,y)</math> carries over the matrix factorization is given by the Kullback-Leibler divergence | + | Alternately, one might be interested in knowing how much more information 𝑝(𝑥,𝑦) carries over its factorization. In such a case, the excess information that the full distribution 𝑝(𝑥,𝑦) carries over the matrix factorization is given by the Kullback-Leibler divergence |
| | | |
− | 或者,你可能会有兴趣知道 p (x,y) / math 的因式分解会带来多少信息。在这种情况下,完整的分布数学 p (x,y) / 数学传递给矩阵分解的剩余信息是由 Kullback-Leibler 分歧给出的
| + | 另一方面,人们可能有兴趣知道在因子分解过程中,有多少信息(𝑝(𝑥,𝑦))携带了多少信息。在这种情况下,全分布𝑝(𝑥,𝑦)通过矩阵因子分解所携带的多余信息由Kullback-Leibler散度给出 |
| | | |
| :<math>\operatorname{I}_{LRMA} = \sum_{y \in \mathcal{Y}} \sum_{x \in \mathcal{X}} | | :<math>\operatorname{I}_{LRMA} = \sum_{y \in \mathcal{Y}} \sum_{x \in \mathcal{X}} |
− |
| |
− | <math>\operatorname{I}_{LRMA} = \sum_{y \in \mathcal{Y}} \sum_{x \in \mathcal{X}}
| |
− |
| |
− | 数学运算符名称{ i }{ LRMA } sum { y } in 数学{ y } sum { x }
| |
| | | |
| {p(x,y) \log{ \left(\frac{p(x,y)}{\sum_w p^\prime (x,w) p^{\prime\prime}(w,y)} | | {p(x,y) \log{ \left(\frac{p(x,y)}{\sum_w p^\prime (x,w) p^{\prime\prime}(w,y)} |
− |
| |
− | {p(x,y) \log{ \left(\frac{p(x,y)}{\sum_w p^\prime (x,w) p^{\prime\prime}(w,y)}
| |
− |
| |
− | { p (x,y) log {( frac { p (x,y)}{和 w ^ prime (x,w) p ^ prime }(w,y)}
| |
| | | |
| \right) }}, | | \right) }}, |
− |
| |
− | \right) }},
| |
− |
| |
− | 开始,开始,
| |
− |
| |
− | </math>
| |
− |
| |
| </math> | | </math> |
| | | |
− | 数学
| |
| | | |
| The conventional definition of the mutual information is recovered in the extreme case that the process <math>W</math> has only one value for <math>w</math>. | | The conventional definition of the mutual information is recovered in the extreme case that the process <math>W</math> has only one value for <math>w</math>. |